Self Studies

Moving Charges and Magnetism Test - 37

Result Self Studies

Moving Charges and Magnetism Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two particles having same charge and $$KE$$ enter at right angles into the same magnetic field and travel in circular paths of radii $$2 cm$$ and $$3 cm$$ respectively. The ratio of their masses is :
    Solution
    Radius of charged particle in magnetic field is,
    $$r=\dfrac{mv}{qB}$$
    $$\dfrac{mv^{2}}{2}=K_{e}$$
    $$r=\dfrac{\sqrt{2K_{e}m}}{qB}$$
    $$r_{1}=\dfrac{\sqrt{2K_{e}m_{1}}}{qB}$$
    $$r_{2}=\dfrac{\sqrt{2K_{e}m_{2}}}{qB}$$
    $$\dfrac{4}{9}=\dfrac{m_{1}}{m_{2}}$$
  • Question 2
    1 / -0
    Two long straight parallel wires separated by a distance, carrying equal currents exert a force F per unit length on each other. If the distance of separation is doubled, and the current in each is halved, the force per unit length, between them will be :
    Solution
    $$F=\dfrac { \mu_o{ i }_{ 1 }{ i }_{ 2 } }{ 2\pi d } $$
    by halfing each current, we get and distance is doubled, then 

    $$F=\dfrac { \mu_o\dfrac { { i }_{ 1 } }{ 2 } \quad \dfrac { { i }_{ 2 } }{ 2 }  }{ 2\pi \quad (2d) } =\dfrac { 1 }{ 8 } \quad \bigg (\dfrac { \mu_o{ i }_{ 1 }{ i }_{ 2 } }{ 2\pi d } \bigg )=\dfrac { F }{ 8 } $$
  • Question 3
    1 / -0
    A proton of energy $$2 MeV$$ is moving perpendicular to uniform magnetic field of $$2.5 T$$. The force on the proton is : ($$M_p=1.6\times 10^{-27}kg$$ and $$q_{p}=e=1.6\times 10^{-19}C$$ ) 
    Solution
    $$F=qvB$$
    $$\dfrac{mv^{2}}{2}=K_{e}$$
    $$v=\sqrt{\dfrac{2K_{e}}{m}}$$
    $$\therefore f=q\times \sqrt{\dfrac{2K_{e}}{m}}\times B$$
    =$$1.6\times 10^{-19}\times \sqrt{\dfrac{2\times 2\times 10^{6}\times 1.6\times 10^{-19}}{1.6\times 10^{-27}}}\times 2.5$$
    =$$8\times 10^{-12} N$$
  • Question 4
    1 / -0
    A proton of energy $$E$$ is moving along a circular path in a uniform magnetic field. If an alpha particle describes the same circular path, its energy should be :
    Solution
    proton $$\dfrac{mv^{2}}{2}=E$$
    $$r=\dfrac{mv}{qB}$$=$$\dfrac{\sqrt{2Em}}{qB}$$
    for $$\alpha $$ particle, $$M=4m \ and \ Q=2q$$

    $$r=\dfrac{\sqrt{2{E}'4m}}{2qB}$$

    $$r=\dfrac{\sqrt{2{E}'m}}{qB}$$

    $${E}'=E$$
  • Question 5
    1 / -0
    An electron travelling with a velocity $$\bar{V}=10^{7}i\ m/s$$ enter a magnetic field of induction $$\bar{B}=\overline{2j}$$ . The force on electron is 
    Solution
    $$\bar{F}=q\left ( \underset{V}{\rightarrow}\times \underset{B}{\rightarrow} \right )$$
    =$$q\times 10^{7}\times 2\times \bar{k}$$
    =$$1.6\times 10^{-19}\times 2\times 10^{7} \bar{k} N$$
    =$$3.2\times 10^{-12}\bar{k} N$$
  • Question 6
    1 / -0
    Electrons accelerated by a potential difference $$V$$ enter a uniform magnetic field of flux density $$B$$ at right angles to the field. They describe a circular path of radius $$r$$. If now $$V$$ is doubled and $$B$$ is also doubled, the radius of the new circular path is :
    Solution
    Radius of charged particle in magnetic field is,
    $$r=\dfrac{mv}{qB}$$
    $$ \dfrac{mv^{2}}{2}=qV$$
    $$mv=\sqrt{2qVm}$$
    $$r=\dfrac{mv}{qB}=\dfrac{\sqrt{2qVm}}{qB}=\dfrac{1}{B}\times\bigg  (\sqrt{\dfrac{2Vm}{q}}\bigg )$$
    $${r}'=\dfrac{1}{2B}\times\bigg (\sqrt{\dfrac{2\times 2Vm}{q}}\bigg )=\dfrac{r}{\sqrt{2}}$$
  • Question 7
    1 / -0
    A proton moving with a velocity of $$(6\hat{i} + 8\hat{j}) \times 10^{5} \ ms^{-1}$$ enters uniform magnetic field of induction $$5 \times 10^{-3} \hat{k}T$$ . The magnitude of the force acting on the proton is :
    ($$\hat{i}, \hat{j}$$ and $$\hat{k}$$ are unit vectors forming a right handed triad)
    Solution
    Force on a charged particle in magnetic field is given by,
    $$\bar{F}=q\left ( {\vec{V}}{}\times \vec{B}{} \right )$$
    =$$1.6\times 10^{-19}((6\hat{i}+8\hat{j})\times 5\hat{k})\times10^{5}\times 10^{-3}$$
    =$$1.6\times 10^{-19}\times 10^{-2}(-30\hat{j}+40\hat{i})$$
    =$$1.6\times 10^{-16}(-3\hat{j}+4\hat{i})$$
    $${\left | F \right |}=1.6\times 10^{-16}\sqrt{3^{2}+4^{2}}$$
    =$$1.6\times 10^{-16}\times 5  N$$
    =$$8\times 10^{-16} N$$
  • Question 8
    1 / -0
    If a particle of charge $$10^{-12}C$$  moving along the x-axis with a velocity $$10^{5}$$ m/s. experiences a force of $$10^{-10}N$$ in y-direction due to magnetic field, then the minimum magnetic field is. 
    Solution
    $$f=qVB\sin \theta $$

    B will be minimum when  $$\theta =90^{\circ}$$
    $$B=\dfrac{f}{qV}$$
    =$$\dfrac{10^{-10}}{10^{-12}\times 10^{5}}$$
    =$$10^{-3}T$$ in Z-direction
  • Question 9
    1 / -0
    Acceleration experienced by a particle with specific charge $$1 \times10^{7} C/kg$$ when fired perpendicular to a magnetic field of induction $$100 T$$ with a velocity $$10^{5} ms^{-1}$$ is :
    Solution
    Specific charge $$\left(\dfrac{q}{m}\right)=10^{7} C/kg$$
    $$\left | B \right |=100T$$

    $$f=qVB \sin \theta$$

    $$q=\dfrac{f}{m} $$

    =$$\dfrac{qVB \sin \theta}{m} $$

    =$$\dfrac{10^{7}\times 10^{5}\times 100 \times \sin 90^{\circ}}{1}$$

    =$$10^{14} ms^{-2}$$
  • Question 10
    1 / -0
    An $$\alpha $$ -particle describes a circular path of radius $$r$$ in a magnetic field $$B$$. The radius of the circular path described by the proton of same energy in the same magnetic field is :
    Solution
    For $$ \  \alpha-$$ particle,
    $$M=4m$$
    $$q=2e$$
    So,$$r=\dfrac{\sqrt{2K_{e}M}}{qB}$$
    =$$\dfrac{\sqrt{2K_{e}m}}{eB}$$

    For proton $$M=m$$ ,
    $$q=e$$
    $$\therefore R=\dfrac{Mv}{qB}$$
    =$$\dfrac{\sqrt{2K_{e}M}}{qB}$$
    =$$\dfrac{\sqrt{2K_{e}m}}{eB}$$
    $$=r$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now