Let
magnetic field strength be $$B$$
Charge $$q$$
Mass $$m$$ and
Radius of the circular
path be $$r$$
$$\vec { B=B\hat { k
} } $$
$$\vec { v } =v\cos \theta
\hat { i } +v\sin \theta \hat { j } \\ \vec { F } =\left( v\cos \theta \hat { i
} +v\sin \theta \hat { j } \right) \times Bq\hat { k } \\ \Rightarrow
\vec { F } =Bqv\left( \cos \theta \hat { i } +\sin \theta \hat { j }
\right) \\ \theta =\omega t\\ { a }_{ x }=\dfrac { Bqv }{ m } \sin \omega t\\ \dfrac
{ { d }^{ 2 }x }{ d{ t }^{ 2 } } =\dfrac { Bqv }{ m } \sin \omega t$$
Integrating
$$\Rightarrow x=\dfrac
{ Bqv }{ m{ \omega }^{ 2 } } \sin \left( \omega t+\theta \right) $$
So magnitude of
maximum horizontal displacement suffered by the particle in the field will
be
$${ x }_{ max }=\dfrac
{ Bqv }{ m{ \omega }^{ 2 } } $$
Again,
$${ x }_{ max }=\dfrac
{ Bqv }{ m{ \omega }^{ 2 } } \\ Bqv=m{ \omega }^{ 2 }r\\ \omega =\dfrac
{ Bq }{ m } \\ { x }_{ max }=\dfrac { v }{ \omega } $$
$$v=r\omega \\
\Rightarrow { x }_{ max }=r$$
This means for a
particle to reach maximum displacement the field must have a minimum length of
$$r$$
since length of field
is $$1.5r$$ the particle cannot come out of field horizontally so to come out
of it must reverse its direction and thus displacement.
Thus the particle will
deflect by $$180°$$