Self Studies

Moving Charges and Magnetism Test - 71

Result Self Studies

Moving Charges and Magnetism Test - 71
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In Figure, assume $$I_1=2.00 \,A$$ and $$I_2=6.00 \,A$$. What is the relationship between the magnitude $$F_1$$ of the force exerted on wire $$1$$ and the magnitude $$F_2$$ of the force exerted on wire $$2$$?

  • Question 2
    1 / -0
    Classify each of the following statements as a characteristic.
    The magnitude of the force depends on the charged object’s direction of motion.
  • Question 3
    1 / -0
    A proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the protons velocity as shown in Figure. After the proton enters the field, does it.

    Solution

  • Question 4
    1 / -0
    Classify each of the following statements as a characteristic.
    The force exerted on a charged object is proportional to its speed.
    Solution
    $$F_B=|q|vB\sin\theta$$ is non-zero unless $$\theta=\pm90^{o}$$.
  • Question 5
    1 / -0
    In the velocity selector shown in Figure, electrons with speed $$v =\dfrac{ E}{B}$$ follow a straight path. Electrons moving significantly faster than this speed through the same selector will move along what kind of path?

    Solution
    The electrons will feel a constant electric force and a magnetic force that will charge in direction and in magnitude as their speed changes.
  • Question 6
    1 / -0
    Classify each of the following statements as a characteristic.
    The force exerted on a moving charged object is zero.
    Solution
    But $$F_B=|q|vB\sin\theta$$ is zero if $$\theta=\pm90^{o}$$
  • Question 7
    1 / -0
    An electron is projected into a magnetic field of $$B = 5\times 10^{-3} T$$ and rotates in a circle of radius of $$R = 3\ mm$$. Find the work done by the force due to magnetic field.
  • Question 8
    1 / -0

    A current of i ampere is flowing through each ofthe bent wires as shown the magnitude and direction of magnetic field at O is

    Solution
    $$B=\dfrac { { \mu  }_{ 0 }I }{ 2R } \dfrac { 3 }{ 4 } +\dfrac { { \mu  }_{ 0 }I }{ 2R } \frac { 1 }{ 4 } $$

    $$B=\dfrac { { \mu  }_{ 0 }I }{ 8 } \left[ \dfrac { 3 }{ { R }^{ \prime  } } +\dfrac { 1 }{ R }  \right] $$
  • Question 9
    1 / -0
    When a particle of charge q is projected with uniform speed u along x - axis of the Cartesian coordinate system $$\left ( \hat{i},\hat{j},\hat{k} \right )$$ in the presence of a magnetic field of induction $$\vec{B}$$, the force on q is $$\vec{F}=\frac{qu\vec{B}}{2}\hat{j}$$ and when the particle is projected along y - axis with same speed, the force $$\vec{F}=\frac{qu\vec{B}}{2}\left ( -\hat{i}+\sqrt{3}\hat{k} \right )$$. The magnetic field $$\vec{B}$$ is
    Solution
    Initial velocity along x-axis $$U =U \hat{i}$$
    Force when projected along x-axis $$F=q\left ( \vec{V}\times \vec{B} \right )$$
    Let the magnetic field be $$\vec{B}=B\left ( a\hat{i}+b\hat{j}+c\hat{v} \right )$$
    $$V_{1}=U\hat{i}$$
    $$F_{1}=\frac{qUB}{2}\hat{j}=qB\left ( U\hat{i}\times \left ( a\hat{i}+b\hat{j} +c\hat{k}\right ) \right )$$
    $$\frac{qUB}{2}\hat{j}=qBu\left ( v\hat{k}-c\hat{j} \right )$$
    $$ b\hat{k}-c\hat{j}=\frac{\hat j}{2}$$
    $$c=-\frac{1}{2},b=0 $$
    $$F_{2}=\frac{qU\vec{B}}{2}\left ( -\hat{i} +\sqrt{3}\hat{k}\right ),V_{2}=U\hat{j}$$
    $$F_{2}=q\left ( U\hat{j} \times \vec{B}\left ( a\hat{i}+c\hat{k} \right )\right )$$
    $$\frac{qV\vec{B}}{2}\left ( -\hat{i}+\sqrt{3}\hat{k} \right )=qV\vec{B}\left ( -\hat{k} a+c\hat{i}\right )$$

    $$a=-\frac{\sqrt{3}}{2},c=-\frac{1}{2}$$

    $$\vec{B}=-\vec{B}\left ( \frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2}\hat{k}\right )$$
  • Question 10
    1 / -0
    A charged particle q is moving with a velocity $$\vec{v_{1}}=2\hat{i}m/s$$  at a point in a magnetic field $$\vec{B}$$ and experiences a force $$\vec{F_{1}}=q(\hat{k}-2\hat{j})N.$$ If the same charge moves with velocity $$\vec{v_{2}}=2\hat{j}m/s$$ from the same point in that magnetic field and experiences a force $$\vec{F_{2}}=q(2\hat{i}+\hat{k})N$$,  the magnetic induction at that point will be :
    Solution
    Let the magnetic induction at required point be $$\bar { B } ={ B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } $$
    Magnetic force $$\left( \bar { F }  \right) $$ on particle of charge (q), moving with velocity $$\bar { V } $$ in the magnetic field region of intensity $$\left( \bar { B }  \right) $$ is given as
    $$\bar { F } =q\left( \bar { V } \times \bar { B }  \right) $$
    Case 1: $$\bar { { F }_{ 1 } } =q\left( \bar { { V }_{ 1 } } \times \bar { B }  \right) $$
    $$q\left( \hat { k } -2\hat { j }  \right) =q\left( 2\hat { i } \times \left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k }  \right)  \right) $$
    $$\hat { k } -2\hat { j } =2{ B }_{ y }\hat { k } -2{ B }_{ z }\hat { j } $$
    $$\therefore 2{ B }_{ y }=1,\quad { B }_{ y }={ 1 }/{ 2 }.....\left( i \right) $$
    $$-2=-2{ B }_{ z },\therefore { B }_{ z }=1.....\left( ii \right) $$
    Case 2: $$\bar { { F }_{ 2 } } =q\left( \bar { { V }_{ 2 } } \times \bar { B }  \right) $$
    $$q\left( 2\hat { i } +\hat { k }  \right) =q\left( 2\hat { j } \times \left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k }  \right)  \right) $$
    $$2\hat { i } +\hat { k } =-2{ B }_{ x }\hat { k } +2{ B }_{ z }\hat { i } $$
    $$\therefore -2{ B }_{ x }=1,\quad \therefore +{ B }_{ x }={ 1 }/{ 2 }......\left( iii \right) $$
    Thus from $$\left( i \right) ,\left( ii \right) \& \left( iii \right) $$
    $$\bar { B } =-\cfrac { 1 }{ 2 } \hat { i } +\cfrac { 1 }{ 2 } \hat { j } +\hat { k } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now