Let the magnetic induction at required point be $$\bar { B } ={ B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } $$
Magnetic force $$\left( \bar { F } \right) $$ on particle of charge (q), moving with velocity $$\bar { V } $$ in the magnetic field region of intensity $$\left( \bar { B } \right) $$ is given as
$$\bar { F } =q\left( \bar { V } \times \bar { B } \right) $$
Case 1: $$\bar { { F }_{ 1 } } =q\left( \bar { { V }_{ 1 } } \times \bar { B } \right) $$
$$q\left( \hat { k } -2\hat { j } \right) =q\left( 2\hat { i } \times \left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } \right) \right) $$
$$\hat { k } -2\hat { j } =2{ B }_{ y }\hat { k } -2{ B }_{ z }\hat { j } $$
$$\therefore 2{ B }_{ y }=1,\quad { B }_{ y }={ 1 }/{ 2 }.....\left( i \right) $$
$$-2=-2{ B }_{ z },\therefore { B }_{ z }=1.....\left( ii \right) $$
Case 2: $$\bar { { F }_{ 2 } } =q\left( \bar { { V }_{ 2 } } \times \bar { B } \right) $$
$$q\left( 2\hat { i } +\hat { k } \right) =q\left( 2\hat { j } \times \left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } \right) \right) $$
$$2\hat { i } +\hat { k } =-2{ B }_{ x }\hat { k } +2{ B }_{ z }\hat { i } $$
$$\therefore -2{ B }_{ x }=1,\quad \therefore +{ B }_{ x }={ 1 }/{ 2 }......\left( iii \right) $$
Thus from $$\left( i \right) ,\left( ii \right) \& \left( iii \right) $$
$$\bar { B } =-\cfrac { 1 }{ 2 } \hat { i } +\cfrac { 1 }{ 2 } \hat { j } +\hat { k } $$