Let the magnetic induction at required point be
$$\bar { B } =\left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } \right) T$$
Magnetic Force $$\left( \bar { F } \right) $$ on charged particle (q) moving with Velocity (V) in magnetic field $$\left( \bar { B } \right) $$ is given as
$$\bar { F } =q\left( \bar { V } \times \bar { B } \right) $$
Case 1: $$q\left( -\hat { j } +\hat { k } \right) =q\left( \hat { i } \times \left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } \right) \right) $$
$$-\hat { j } +\hat { k } ={ B }_{ y }\hat { k } -{ B }_{ z }\hat { j } $$
$${ B }_{ z }=1....\left( i \right) $$
$${ B }_{ y }=+1....\left( ii \right) $$
Case 2: $$q\left( \hat { j } -\hat { k } \right) =q\left( \hat { j } \left( { B }_{ x }\hat { i } +{ B }_{ y }\hat { j } +{ B }_{ z }\hat { k } \right) \right) $$
$$\therefore \hat { j } -\hat { k } =-{ B }_{ x }\hat { k } +{ B }_{ z }\hat { i } $$
$$\therefore { B }_{ x }=1....\left( iii \right) $$
From $$\left( i \right) ,\left( ii \right) \& \left( iii \right) $$
$$\bar { B } =\left( \hat { i } +\hat { j } +\hat { k } \right) T$$ Thus, option A