Given that,
Self-inductance of coil = $$2.0 H$$
Let the current flowing through the coil be 2A
at time $${{t}^{2}}$$
Now,
$$
2=2\sin {{t}^{2}} $$
$$
t=\sqrt{\dfrac{\pi }{2}} $$
Now, the amount of energy spent during the
period when the current changes from $$0\ to\ 2\ A$$
Now, Self-induced e. m. f
$$E=L\dfrac{di}{dt}$$
Now, the work done is
$$ dW=L\left( \dfrac{di}{dt} \right)dq $$
$$ dW=L\times \dfrac{di}{dt}\times idt $$
$$ dW=Lidi $$
Now, on integrate
$$ \int{dW=\int\limits_{0}^{t}{Li}}di $$
$$ W=\int\limits_{0}^{t}{L2\sin
{{t}^{2}}d\left( 2\sin {{t}^{2}} \right)} $$
$$ W=\int\limits_{0}^{t}{8L\sin {{t}^{2}}\cos
{{t}^{2}}tdt} $$
$$ W=4L\int\limits_{0}^{t}{\sin 2{{t}^{2}}dt} $$
Now, let
$$ \theta =2{{t}^{2}} $$
$$ d\theta =4tdt $$
$$ dt=\dfrac{d\theta }{4t} $$
Now, put the value of $$2{{t}^{2}}$$and
$$dt$$
$$ W=4L\int\limits_{0}^{t}{\dfrac{\sin \theta
d\theta }{4}} $$
$$ W=L\left[ \left( -\cos \theta \right) \right]_{0}^{t} $$
$$ W=-L\left[ \cos 2{{t}^{2}} \right]_{0}^{t} $$
$$ W=-L\left[ \cos 2{{t}^{2}}
\right]_{0}^{\sqrt{\dfrac{\pi }{2}}} $$
$$ W=2L $$
$$ W=2\times 2 $$
$$ W=4\,J $$
Hence, the amount of energy is $$4\ J$$