The rod becomes a seat of e.m.f $$e=Blv$$ when it accquire the terminal velocity the resultant force on it is zero
$$mg-Bil=0$$ or $$mg=Bil$$
The equivalent corcuit is shown
$$i=\dfrac{e}{\dfrac{R_{1}R_{2}}{R_{1}+R_{2}}}$$
$$=\dfrac{Blv(R_{1}+R_{2})}{R_{1}R_{2}}$$
$$mg=\dfrac{BBlv(R_{1}+ R_{2})}{R_{1}R_{2}} \Rightarrow v=\dfrac{mgR}{B^2I^2}$$
$$e=Blv=\dfrac{mgR}{Bl}$$
$$P_{1}=\dfrac{e^{2}}{R_{1}}=\dfrac{m^{2}g^{2}R^{2}}{B^{2}l^{2}R_{1}}=\dfrac{m^{2}g^{2}}{B^{2}l^{2}R_{1}}\times \dfrac{R_{1}^{2}R_{2}^{2}}{(R_{1}+R_{2})^{2}}$$
$$\Rightarrow \dfrac{(R_{1}+R_{2})^{2}}{R_{1}R_{2}^{2}}=\dfrac{m^{2}g^{2}}{B^{2}l^{2}P_{1}}$$
$$\Rightarrow \dfrac{1}{R_{1}}\dfrac{(R_{1}+R_{2})^{2}}{R_{2}}=\dfrac{m^{2}g^{2}}{B^{2}l^{2}P_{1}}$$
Similarly,$$\dfrac{1}{R_{2}}\left ( \dfrac{R_{1}+R_{2}}{R_{1}} \right )^{2}=\dfrac{m^{2}g^{2}}{B^{2}l^{2}P_{2}}$$
Dividing$$\dfrac{R_{2}}{R_{1}}=\dfrac{P_{1}}{P_{2}}\Rightarrow \dfrac{R_{2}+R_{1}}{R_{2}}=\dfrac{P_{1}+P_{2}}{P_{1}}$$
$$\dfrac{1}{R_{1}}\left ( \dfrac{P_{1}+P_{2}}{P_{1}} \right )^{2}=\dfrac{m^{2}g^{2}}{B^{2}l^{2}P_{1}}\Rightarrow R_{1}=\dfrac{B^{2}l^{2}}{m^{2}g^{2}}\dfrac{(P_{1}+P_{2})^{2}}{P_{1}}$$
$$R_{2}=\dfrac{b^{2}l^{2}}{m^{2}g^{2}}\dfrac{(P_{1}+P_{2})^{2}}{P_{2}}=\dfrac{(0.76+1.2)^{2}}{1.2}\times \dfrac{0.6^{2\times 1^{2}}}{0.2^{2}\times 9.8^{2}}$$
$$=0.3ohm$$
$$R_{1}=\dfrac{(0.76+1.2)^{2}}{0.76}\times \dfrac{0.6^{2}\times 1^{2}}{0.2^{2}\times 9.8^{2}}=0.47ohm$$
$$v=\dfrac{mg}{B^{2}l^{2}}.\dfrac{R_{1}R_{2}}{(R_{1}+R_{2})}=1m/sec$$