Hint: The induced emf in the square frame will be $$\varepsilon = {B_1}av - {B_2}av$$
Correct Option: (D)
Explanation for Correct Option:
Step 1: Find the magnetic induction.
- As, Magnetic field $$B = \dfrac{{{\mu
_0}I}}{{2\pi r}}$$, where $${\mu _0}$$is
a constant, $$I$$ is the current through
the conductor, and $$r$$is the distance
between the conducting points.
- $${B_1} = \dfrac{{{\mu
_o}I}}{{2\pi (x - \dfrac{a}{2})}}$$ , where $$I$$ is the current flowing thriugh long wire; $$x$$ is the distance between the long wire and the middle axis of the square frame; $$a$$ is the side length of the square frame.
- $${B_2} = \dfrac{{{\mu
_o}I}}{{2\pi (x + \dfrac{a}{2})}}$$
Step 2: Find the induced emf.
Induced emf, $$\varepsilon = {B_1}av - {B_2}av$$
Here, $$v$$ is the velocity of the frame.
$$
\Rightarrow \varepsilon = ({B_1} -
{B_2})av$$
$$
\Rightarrow \varepsilon = (\dfrac{1}{{x
- \dfrac{a}{2}}} - \dfrac{1}{{x + \dfrac{a}{2}}})\dfrac{{{\mu _o}Iav}}{{2\pi }}$$
$$
\Rightarrow \varepsilon = \dfrac{{{\mu
_o}Iav}}{{2\pi }}\dfrac{a}{{(2x - a)(2x + a)}}$$
Therefore, the emf induced, $$\varepsilon
\alpha \dfrac{1}{{(2x - a)(2x + a)}}$$