Self Studies

Alternating Current Test - 37

Result Self Studies

Alternating Current Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A broadcasting centre broadcasts at 300 metre band. A capacitor of capacitance 2.5$$\mu$$F is available. The value of the inductance required for resonant circuit is nearly
    Solution
    $$c=\lambda \nu \quad at   resonance$$

    $$ \nu =\dfrac { c }{ \lambda  } =\dfrac { 1 }{ 2\pi \sqrt { LC }  }$$

    $$\sqrt { LC } =\dfrac { 300 }{ 3\times 10^8\times 2\pi  } =\dfrac{ 10^{-6 }}{2\pi} $$

    $$LC=\dfrac{10^{-12}}{4 \pi^2}$$

    $$L=\dfrac {10^{ -12 } }{ 2.5\times 10^{ -6 }\times 4\times 9.87 } =\dfrac {10^{ -6 } }{ 98.7 } \cong {10}^{ -8 }\ H$$
  • Question 2
    1 / -0
    If in a series L-C-R ac circuit, the voltages across L, C and R are $$V_1, V_2$$ and $$V_3$$ respectively, then the voltage of the source is always
    Solution
    The voltages across different elements in AC circuit add vectorially.
    The voltages across inductor and capacitor are out of phase and at $$90^{\circ}$$ to that across resistor.
    Hence net voltage across source $$=\sqrt{(V_1-V_2)^2+V_3^2}$$.
  • Question 3
    1 / -0
    An ac source producing emf  $$\displaystyle e = E_0[cos  (100 \pi t) + cos (500 \pi t)]$$ is connected in series with a capacitor and a resistor. The steady state current in the circuit is found to be $$\displaystyle i = I_1  cos  (100 \pi t + \varphi_1) + I_2  cos  (500 \pi t + \varphi_2)$$
    Solution
    We can assume two different sources connected in series with same orientation.

    $${ E }_{ 1 }={ E }_{ 0 }\cos { 100\pi t } $$

    $${ E }_{ 2 }={ E }_{ 0 }\cos { 500\pi t } $$

    such that $$e={ E }_{ 0 }\cos { 100\pi t }+{ E }_{ 0 }\cos { 500\pi t }$$

    becomes,$$e={ E }_{ 1 }+{ E }_{ 2 }$$

    Now, solving using principle of superposition we get,

    $$i_{ 1 }=100\pi C\cos { (100 } \pi t+\phi_1)$$

    $$i_{ 2 }=500\pi C\cos { (500 } \pi t+\phi_2)$$

    Final current will be,

    $$i=i_{ 1 }+i_{ 2 }$$

    From this we get

    $$I_{ 1 }=100\pi C$$

    and $$I_{ 2 }=500\pi C$$

    From this we get,

    $$I_{ 1 }<I_2$$.
  • Question 4
    1 / -0
    In an electric circuit the applied alternating emf is given by $$\displaystyle E = 100\sin(314t) $$ volts and current flowing $$\displaystyle  I =  \sin  \left(314t + \dfrac{\pi}{3}\right)$$, Then, the impedance of the circuit is $$(in\ \Omega)$$
    Solution
    Phasor of $$E=100 \angle{(\pi /2)} $$

    phasor of $$I=1 \angle{(\pi /2 + \pi /3)}$$

    phasor of impedance $$=\dfrac{E}{I} = 100 \angle{(-\pi/3)} $$

    impedance magnitude$$= 100\ \Omega$$
  • Question 5
    1 / -0
    An $$AC$$ voltmeter in an $$L-C-R$$ circuit reads 30 volt across resistance, 80 volt across inductance and 40 volt across capacitance. The value of applied voltage will be
    Solution
    $$V=\sqrt { { V }_{ R }^{ 2 }+{ ({ V }_{ L }^{  }-{ V }_{ C }^{  }) }^{ 2 } } $$

    $$V=\sqrt { { 30}^{ 2 }+{ (80^{  }-40^{  }) }^{ 2 } } $$

    $$V=50$$ volt
  • Question 6
    1 / -0
    A coil of 10 mH and 10 $$\Omega$$ resistance is connected in parallel to a capacitance of $$0.1 \mu F$$. The impedance of the
  • Question 7
    1 / -0
    The reactance of a condenser of capacity 50 $$\mu$$F for an $$AC$$ of frequency $$2 \times 10^3$$ Hertz will be
    Solution
    Given :  $$\nu = 2000$$ Hz    ,      $$C = 50\mu F$$

    Capacitive reactance   $$X_c = \dfrac{1}{2\pi \nu C}$$

    $$ = \dfrac{1}{2\pi (2000)\times 50\times 10^{-6}} $$

    $$= \dfrac{5}{\pi}$$   $$\Omega$$
  • Question 8
    1 / -0
    The capacitive reactance of a condenser of capacity 25$$\mu$$F for an AC of frequency 4000 Hz will be
    Solution
    $${ X }_{ C }=\dfrac { 1 }{ \omega C } $$

    $${ X }_{ C }=\dfrac { 1 }{2\pi f\times C } $$

    $${ X }_{ C }=\dfrac { 1 }{2\pi \times 4000\times 25\times { 10 }^{ -6 } } $$

    $${ X }_{ C }=\dfrac { 5 }{ \pi  } $$.
  • Question 9
    1 / -0
    In the figure two identical bulbs, each with filament resistance $$100\ \Omega$$ are connected to a resistor $$R = 100\ \Omega$$, and an inductor $$\displaystyle (X_L = 100 \Omega)$$ as shown in the Figure. Then, which bulb glows more

    Solution
    Impedance in branch containing bulb1

    $$Z_1=200\Omega$$

    impedance in branch containing bulb 2

    $${ Z }_{ 2 }=\sqrt { { R }^{ 2 }+{ { X }_{ L } }^{ 2 } } $$

    $${ Z }_{ 2 }=\sqrt { { 100 }^{ 2 }+{ 100 }^{ 2 } } $$

    $${ Z }_{ 2 }=100\sqrt { 2 } $$

    Since,

    $$Z_1>Z_2$$

    $$B_2$$ will glow more than $$B_1$$.
  • Question 10
    1 / -0
    In an ac circuit, the resistance of R $$\Omega$$ is connected in series with an inductance $$I$$. If phase angle between voltage and current be $$\displaystyle 45^{\circ}$$, the value of inductive reactance will be:
    Solution
    $$ \dfrac { R }{ \sqrt { { R }^{ 2 }+{ X }_{ L }^{ 2 } }  } =cos(45)=\dfrac { 1 }{ \sqrt { 2 }  } \\ \Rightarrow 2{ R }^{ 2 }={ R }^{ 2 }+{ X }_{ L }^{ 2 }\quad \\ \Rightarrow \left| { X }_{ L } \right| =R $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now