In ideal choke coil all voltage drop occur at inductor. Resistance is neglected in case of ideal choke coil. so there is only inductance.
Let inductance of choke coil $$= L$$
given value of AC voltage $$(V) = 125\ volt$$, frequency $$(f) = 50\ Hz$$
Current in inductor $$=\dfrac { V }{ \omega L }$$
$${\omega L} = $$Resistance due to inductor,
$$\omega $$ = $$2\pi f$$
Current in inductor $$=\dfrac { V }{ \omega L } = \dfrac { V }{ 2\pi fL } = \dfrac { 125 }{ 2\pi \times 50\times L } $$
Value of current is given in question$$ =10\ A$$.
$$\dfrac { 125 }{ 2\pi \times 50\times L } = 10\Longrightarrow \quad L= \dfrac { 125 }{ 1000\pi } \ H$$
Let the value of resistance is $$R$$
So in pure resistance case
Current $$=\dfrac { V }{ R }$$ , current given $$= 12.5\ A$$
$$\dfrac { 125 }{ R } = 12.5 \Longrightarrow \ R =10\ \Omega $$
Now this $$R\ \&\ L$$ is connected in series to another AC source of $$V = 100\sqrt { 2 }$$ volt,
frequency $$(f) = 40\ Hz$$
so impedance of combination $$(Z) = \sqrt { { R }^{ 2 }+{ \omega L }^{ 2 } } = \sqrt { { R }^{ 2 }+{ 2\pi fL }^{ 2 } }\ \Omega $$
$$Z=\sqrt { { 10 }^{ 2 }+\left( { 2\pi \times 40\times \dfrac { 125 }{ 1000\pi } } \right) ^{ 2 } }$$ , putting value of $$R,L,$$ and new $$f$$.
$$Z=10\sqrt { 2 } \ \Omega $$
Current in new combination $$= \dfrac { V }{ Z }= \dfrac { 100\sqrt { 2 } }{ 10\sqrt { 2 } } = 10\ A$$
So, A is correct Answer.