Self Studies
Selfstudy
Selfstudy

Alternating Current Test - 38

Result Self Studies

Alternating Current Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ac generator in the Figure supplies 150 $$\displaystyle V_{(max)}$$ at 50 Hz. With the switch open as shown in the diagram, the resulting current leads the generator emf by $$60^{\circ}$$. With the switch in position 1, the current lags the generator emf by $$30^{\circ}$$. When the switch is in position 2, the maximum current is 3A. Then, the value of R is:

    Solution


    Answer : A

    $$ switch\quad in\quad position\quad 2:\\ { I }_{ max }=\dfrac { 150 }{ \left| L\omega -\dfrac { 1 }{ C\omega  }  \right|  } =3\quad \Rightarrow \left| L\omega -\dfrac { 1 }{ C\omega  }  \right| =50\\ open\quad switch\quad condition\quad :\\ \hat { Z } =R+j(L\omega -\dfrac { 1 }{ C\omega  } )=Z\angle -60\quad \Rightarrow \dfrac { { R }^{ 2 } }{ { R }^{ 2 }+{ \left| L\omega -\dfrac { 1 }{ C\omega  }  \right|  }^{ 2 } } ={ cos }^{ 2 }(-60)\quad \Rightarrow \dfrac { { R }^{ 2 } }{ { R }^{ 2 }+{ 50 }^{ 2 } } =\left( \dfrac { 1 }{ 2 }  \right) ^{ 2 }\Rightarrow R=\dfrac { 50 }{ \sqrt { 3 }  } A\\  $$ 

  • Question 2
    1 / -0
    An ideal choke takes a current of $$10\ Amperes$$ when connected to an ac supply of  $$125\ volt$$ and $$50\ Hz$$. A pure resistor under the same condition takes a current of  $$12.5\ Ampere$$. If the two are connected to an ac supply of $$100\sqrt {2}$$ volt and $$40\ Hz,$$  then the current in a series combination of the above resistor and inductor is:
    Solution
    In ideal choke coil all voltage drop occur at  inductor. Resistance is neglected in case of ideal choke coil. so there is only inductance.
    Let inductance of choke coil $$= L$$
    given value of AC voltage $$(V) = 125\ volt$$,  frequency $$(f) = 50\ Hz$$
    Current in inductor  $$=\dfrac { V }{ \omega L }$$
    $${\omega L} = $$Resistance due to inductor,
    $$\omega $$ = $$2\pi f$$
    Current in inductor  $$=\dfrac { V }{ \omega L } = \dfrac { V }{ 2\pi fL } = \dfrac { 125 }{ 2\pi \times 50\times L } $$
    Value of current is given in question$$ =10\ A$$.
    $$\dfrac { 125 }{ 2\pi \times 50\times L } = 10\Longrightarrow \quad L= \dfrac { 125 }{ 1000\pi  } \ H$$

    Let  the value of resistance is $$R$$
    So in pure resistance case
    Current  $$=\dfrac { V }{ R }$$ , current given $$= 12.5\ A$$
    $$\dfrac { 125 }{ R } = 12.5 \Longrightarrow \ R =10\ \Omega $$

    Now this $$R\ \&\ L$$ is connected in series to another AC source of $$V = 100\sqrt { 2 }$$ volt,
     frequency $$(f) = 40\ Hz$$
    so impedance of combination $$(Z)  = \sqrt { { R }^{ 2 }+{ \omega L }^{ 2 } } = \sqrt { { R }^{ 2 }+{ 2\pi fL }^{ 2 } }\ \Omega $$
    $$Z=\sqrt { { 10 }^{ 2 }+\left( { 2\pi \times 40\times \dfrac { 125 }{ 1000\pi  }  } \right) ^{ 2 } }$$ , putting value of $$R,L,$$ and new $$f$$.
    $$Z=10\sqrt { 2 } \ \Omega $$
    Current in new combination $$= \dfrac { V }{ Z }= \dfrac { 100\sqrt { 2 }  }{ 10\sqrt { 2 }  } = 10\ A$$
    So, A is correct Answer.
  • Question 3
    1 / -0
    For the circuit shown in the Figure, the current through the inductor is 0.9 A while the current through the condenser is 0.4 A

    Solution
    The current in inductor and capacitor is always at an phase difference of $$180^o$$
    for $$V=V_osin\omega t$$
    Capacitor, $$i=i_osin(\omega t  -  \dfrac{\pi}{2})$$
    Inductor, $$i=i_osin(\omega t  +  \dfrac{\pi}{2})$$
    So, the current from both branches will be $$0.9 + (-0.4) = 0.5A$$
  • Question 4
    1 / -0
    A circuit containing a $$80\ mH$$ inductor and $$60 \ \mu F$$ capacitor in series is connected to a $$230\ V, 50\ Hz$$ supply. If the resistance in the circuit is negligible then the current amplitude will be
    Solution
    $$ \omega =2 \pi f =100 \pi $$ ;  $$ f= 50Hz$$

    Impedance of circuit $$Z=j\left( L \omega -\dfrac{1}{C \omega}\right) =j\left(80 \times 10^{-3} \times 100 \pi -\dfrac{1}{60\times 10^{-6} \times 100 \pi}\right)$$

    Current amplitude $$=\left| \dfrac{V}{Z} \right | =\dfrac { 230 }{ \left| L\omega -\dfrac { 1 }{ C\omega  }  \right|  } =8.226A\quad \quad \quad (\because \omega =2\pi 50) $$
  • Question 5
    1 / -0
    A high-impedance ac voltmeter is connected in turn across the inductor, the capacitor, and the resistance in a series circuit having an ac source of 100 V(rms) and gives the same reading in volts in each case. Then, this reading is:
    Solution

    Let the same reading be $$x V $$,
    then let, $${ Z }_{ total }=R+j({ X }_{ L }-{ X }_{ C })=Z\angle \theta \\ I=\dfrac { { V }_{ S } }{ Z } \angle -\theta \\ therefore,\quad { V }_{ R }=\left| \dfrac { { V }_{ S } }{ Z } R\angle -\theta  \right| \\ \quad \quad \quad \quad \quad \quad \quad \quad { V }_{ L }=\left| \dfrac { { V }_{ S } }{ Z } { X }_{ L }\angle 90-\theta  \right| \\ \quad \quad \quad \quad \quad \quad \quad \quad { V }_{ C }=\left| \dfrac { { V }_{ S } }{ Z } { X }_{ C }\angle -90-\theta  \right| \\ given,\quad { V }_{ R }={ V }_{ L }={ V }_{ V }=x\\ \quad \Rightarrow \quad R={ X }_{ L }={ X }_{ C }\\ \Rightarrow { Z }_{ total }=R=Z\angle 0=Z\quad \quad \\ \Rightarrow \quad \quad { V }_{ R }=\left| \dfrac { { V }_{ S } }{ Z } R\angle -\theta  \right| ={ V }_{ S }\\ \quad \quad \quad \quad { V }_{ L }=\left| \dfrac { { V }_{ S } }{ Z } { X }_{ L }\angle 90-\theta  \right| =\left| j{ V }_{ S } \right| ={ V }_{ S }\\ \quad \quad \quad \quad { V }_{ C }=\left| \dfrac { { V }_{ S } }{ Z } { X }_{ C }\angle -90-\theta  \right|=\left| -j{ V }_{ S } \right| ={ V }_{ S }\\ \Rightarrow x={ V }_{ S }=100V $$

  • Question 6
    1 / -0
    In which of the following circuit, there may be no change in current with increase in the frequency when same ac current is passed through them:
    Solution
    The impedance inductor and capacitor are $$2\pi fL\quad \& \quad 1/2\pi fC$$ respectively, since both of them have the quantity 'f' in their expression the change in frequency will effect their impedance and hence the current in the circuit, so the circuit only with Resistance can be independent of frequency in terms of current.

  • Question 7
    1 / -0
    In an $$L-C-R$$ circuit the capacitance is changed from $$C$$ to $$4C$$. For the same resonant frequency, the inductance should be changed from $$L$$ to
    Solution
    $$\omega =\dfrac { 1 }{ \sqrt { LC }  } $$
    For, $$\omega = constant$$ $$\rightarrow \sqrt { LC } = constant$$
    Therefore, $$C$$ is inversely proportional to $$L$$
    So, if $$C$$ is made $$4C$$ then $$L$$ should be reduced to $$L/4$$ to keep $$\omega$$ constant.
  • Question 8
    1 / -0
    A coil of negligible resistance is connected in series with a 90 $$\Omega$$ resistor across a 120 V, 60 Hz line. An ac voltmeter reads 90 V across the resistance, then the inductance of the coil is approximately
    Solution
    Using Ohm's law
    $$V=IR$$
    where V is potential difference across resistance and I is current in it. 
    As both inductor and resistor are connected in series the current will be same in both the inductor and resistor, which is given as 

    $$ I=\dfrac { 120 }{ \sqrt {R^2+L^2 \omega^2}} $$

    From given data $$V=90 \ V $$ and $$R= 90  \ \Omega$$

    $$ 90=\dfrac { R }{ \sqrt {R^2+L^2 \omega^2}} 120$$

    $$ \dfrac { 1 }{ 120 } =\dfrac { 1 }{ \sqrt { { 90 }^{ 2 }+{ L }^{ 2 }{ (2\pi 60) }^{ 2 } }  }$$

    $$(120)^2=(90)^2+120^2\pi^2 L^2\Rightarrow L^2=\dfrac{120^2-90^2}{120^2 \pi^2}$$

    $$L=\sqrt{\dfrac{30\times 210}{120^2\pi^2}}$$

    $$ L=0.21\quad H $$
  • Question 9
    1 / -0
    With increase in frequency of an ac supply, the impedance of an $$L-C-R$$ series circuit
    Solution
    We know that in an L-C-R circuit impedance is given by,
    $$Z=\sqrt { { R }^{ 2 }+{ ({ X }_{ L }-{ X }_{ C }) }^{ 2 } } $$
    When $${ X }_{ L }=\omega L$$ is less than $${ X }_{ C }=1/\omega C$$
    With increase in $$\omega$$ impedance decrease and become minimum when $${ X }_{ L }={ X }_{ C }$$
    After that $${ X }_{ L }=\omega L$$ will be greater than $${ X }_{ C }=1/\omega C$$
  • Question 10
    1 / -0
    The turning circuit of a radio receiver has a resistance of $$50\ \Omega$$, an inductor of $$10\ \text{mH}$$ and a variable capacitor. A $$1\ \text{MHz}$$ radio wave produces a potential difference of $$0.1\ \text{mV}$$. The values of the capacitor to produce resonance is (Take $${\pi}^{2}=10$$):
    Solution
    $$L=10\ \text{mH}={10}^{-2}\ \text{H}$$
    $$f=1\ \text{MHz}={10}^{6}\ \text{Hz}$$
    $$f=\cfrac {1}{2\pi \sqrt {LC}} $$
    $$f^2=\cfrac {1}{ 4 \pi ^2LC } $$
    $$\Rightarrow C=\dfrac { 1 }{ 4\pi ^2 f ^2 L } =\dfrac { 1 }{ 4\times

    10\times 10^{12}\times 10^{-2}} =\dfrac {10^{- 11}}{4} =2.5\ \text{pF}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now