Self Studies

Alternating Current Test - 49

Result Self Studies

Alternating Current Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the rms current through a $$6.8 k \Omega$$ resistor is $$8 mA$$, the rms voltage drop across the resistor is
    Solution
    Rms current $$I_{rms} = 8 mA$$
    Resistance of resistor $$R = 6.8k\Omega$$
    Thus rms voltage $$V_{rms} = I_{rms} R$$
    $$\therefore$$ $$V_{rms} = (8\times 10^{-3}) \times (6.8\times 10^3)$$
    $$\implies$$ $$V_{rms} = 54.4 V$$
  • Question 2
    1 / -0
    An L-C-R circuit contains $$R=50\Omega $$, $$L=1 mH$$ and $$C=0.1\mu F$$. The impedence of the circuit will be minimum for a frequency of
    Solution
    Impedance of L-C-R circuit will be minimum for a resonant frequency so,
    $${ v }_{ 0 }=\dfrac { 1 }{ 2\pi \sqrt { LC }  } $$
    $$=\dfrac { 1 }{ 2\pi \sqrt { 1\times { 10 }^{ -3 }\times 0.1\times { 10 }^{ -6 } }  } =\dfrac { { 10 }^{ 5 } }{ 2\pi  } Hz$$
  • Question 3
    1 / -0
    The natural frequency of the circuit shown in adjoining figure is

    Solution
    In the given circuit, two capacitor and the two inductor are in series.
    $$\therefore =L_s=L+L=2L$$
    and $$\dfrac{1}{C_s}=\dfrac{1}{C}+\dfrac{1}{C}=\dfrac{2}{C}\Rightarrow C_s=\dfrac{C}{2}$$
    $$\therefore$$ Natural frequency of the circuit
    $$v=\dfrac{1}{2\pi \sqrt{L_sC_s}}=\dfrac{1}{2\pi \sqrt{2L}\times \sqrt{C/2}}$$
    $$=\dfrac{1}{2\pi \sqrt{LC}}$$
  • Question 4
    1 / -0
    The value of alternating emf $$E$$ in the given circuit will be

    Solution
    Value of alternating emf  $$E = \sqrt{V_R^2 + (V_c-V_L)^2}$$
    $$\therefore$$ $$E= \sqrt{(80)^2 + (100 - 40)^2}$$
    Or  $$E = \sqrt{80^2 + 60^2}$$
    $$\implies$$ $$E = \sqrt{10000} = 100V$$ 
  • Question 5
    1 / -0
    If L-R circuit connected to a battery of constant emf $$E$$ switch $$S$$ is closed at time $$t=0$$. If $$e$$ denotes the induced emf across inductor and $$I$$ the current in the circuit at any time $$t$$. Then which of the following graphs shows the variation of $$e$$ with $$I$$?
    Solution
    $$V_L$$ or $$e=E-V_R=E-iR$$
    Thus, $$e-i$$ graph is a straight line with negative slope and positive intercept.
  • Question 6
    1 / -0
    In L-C-R circuit, $$f=\dfrac { 50 }{ \pi  } Hz$$, $$V=50 V$$, $$R=300\Omega$$. If $$L=1H$$ and $$C=20\mu C$$, then the voltage across capacitor is :
    Solution
    For an L-C-R circuit, the impedance $$\left( Z \right) $$ is given by
    $$\because Z=\sqrt { { R }^{ 2 }+{ \left( { X }_{ L }-{ X }_{ C } \right)  }^{ 2 } } $$
    where, $${ X }_{ L }=\omega L=2\pi { f }_{ 1 }$$
    and $${ X }_{ C }=\dfrac { 1 }{ \omega C } =\dfrac { 1 }{ 2\pi fC } $$
    Given, $$f=\dfrac { 50 }{ \pi  } Hz$$, $$R=300\Omega $$ and $$L=1H$$
    and $$C=20\mu C=20\times { 10 }^{ -6 }C$$
           $$Z=\sqrt { { \left( 300 \right)  }^{ 2 }+\left( 2\pi \times \dfrac { 50 }{ \pi  } \times 1-\dfrac { 1 }{ 2\pi \times \dfrac { 50 }{ \pi  } \times 20\times { 10 }^{ -6 } }  \right)  } $$
          $$Z=\sqrt { 90000+{ \left( 100-500 \right)  }^{ 2 } } $$
    $$\Rightarrow Z=\sqrt { 90000+160000 } =\sqrt { 250000 } $$
    $$\Rightarrow Z=500\Omega $$
    Hence, the current in the circuit is given by
    $$i=\dfrac { V }{ Z } =\dfrac { 50 }{ 500 } =0.1A$$
    Voltage across capacitor is
    $${ V }_{ C }=i{ X }_{ C }=\dfrac { i }{ 2\pi fC } =\dfrac { 0.1 }{ 2\pi \times \dfrac { 50 }{ \pi  } \times 20\times { 10 }^{ -4 } } $$
                  $$=\dfrac { 0.1\times { 10 }^{ 6 } }{ 100\times 20 } \Rightarrow { V }_{ C }=50V$$
  • Question 7
    1 / -0
    A coil of inductive reactance $${ 1 }/{ \sqrt { 3 }  }\Omega$$ and resistance $$ 1\Omega $$ is connected to $$200 V$$, $$50 Hz$$ A.C. supply. The time lag between maximum voltage and current is
    Solution
    $$\omega=2\pi f=314 rad/s$$
    $$tan\phi=\dfrac{1}{1/\sqrt{3}}\rightarrow \phi=\dfrac{\pi}{6}$$
    $$\omega t=\dfrac{\pi}{6}$$
    $$t=\dfrac{1}{600}s$$
  • Question 8
    1 / -0
    In the adjoining circuit, if the reading of voltmeter $$V_1$$ and $$V_2$$ are 300 volts each, then the reading voltmeter $$V_3$$ and ammeter A are respectively

    Solution
    Given, $$V_1=V_2=300V;V_3=?,i=?$$
    As, We know,
    $$V=\sqrt{V^2_3+(V_1-V_2)^2}$$
    We now $$(V_1-V_2)^2=(300-300)^2=0$$
    $$\therefore 220=\sqrt{V_3^2}=V_3\Rightarrow V_3=220V$$
    $$\therefore I=\dfrac{V_3}{R}=\dfrac{220}{100}=2.2A$$
    So the reading of voltmeter $$V_3=220V $$ and Ammeter $$A=2.2A$$.
  • Question 9
    1 / -0
    An inductive coil has a resistance of 100 When an AC signal of frequency 1000 Hz is applied to the coil, the voltage leads the current by $$45^o$$. The inductance of the coil is 
    Solution
    Given :  $$f = 1000$$ Hz
    Resistance of inductive coil $$X_L = 100\Omega$$
    Thus inductance of coil $$L = \dfrac{X_L}{2\pi f}$$
    $$\therefore$$  $$L = \dfrac{100}{2\pi \times 1000}  = \dfrac{1}{20\pi }$$ Henry
  • Question 10
    1 / -0
    The instantaneous values of current and voltage in an AC circuit are $$i=100\sin 314 t$$ amp and $$e=200\sin (314t+\dfrac{\pi}{3})V$$ respectively. If the resistance is $$1\Omega$$, then the reactance of the circuit will be:
    Solution
    We have, $$V_0=i_0Z$$
    $$\Rightarrow 200=100Z$$
    $$Z=2\Omega$$
    So, the impedance of the circuit
    $$Z^2=R^2+X^2_L$$
    $$\Rightarrow (2)^2=(1)^2+X^2_L$$
    $$X_L=\sqrt{3}\Omega$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now