`
Self Studies

Alternating Current Test - 74

Result Self Studies

Alternating Current Test - 74
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    When $$100\space V$$ dc is applied across a coil, a current of $$1\space A$$ flows through it and when $$100\space V$$ ac of $$50\space Hz$$ is applied to the same coil, only $$0.5\space A$$ flows. The inductance of coil is
    Solution
    $$ R = \frac{V_{DC}}{I_{DC} } = \frac{100}{1} = 100 \Omega $$
    $$\frac{V_{AC}^2}{I_{AC}^2} = R^2 + X_L^2 \Rightarrow \frac{100^2}{0.5^2}= 100^2+ X_L^2  \Rightarrow X_L = \sqrt{30000}= 100\sqrt{3} \Omega$$
    $$X_L= L 2 \pi f \Rightarrow 100\sqrt{3} = L 2 \pi 50 \Rightarrow L =\frac{\sqrt{3}}{\pi} H$$
  • Question 2
    1 / -0
    A charged capacitor discharges through a resistance R with time constant $$ \tau $$. The two are now placed in series across an AC source of angular frequency $$\displaystyle \omega = \frac {1} {\tau} $$ . The impedance of the circuit will be:
    Solution
    In RC circuit, impedance $$Z=\sqrt{R^2+\dfrac{1}{\omega^2C^2}}$$ and time constant $$\tau=CR$$
    Since $$\omega=\dfrac{1}{\tau}$$ so $$Z=\sqrt{R^2+\dfrac{\tau^2}{C^2}}=\sqrt{R^2+\dfrac{C^2R^2}{C^2}}=\sqrt{2} R$$
  • Question 3
    1 / -0
    The resonant frequency of an L-C circuit is
    Solution

  • Question 4
    1 / -0
    A series LCR circuit is connected across a source of alternating emf of changing frequency and resonates at frequency $$\text{f}_o$$. Keeping capacitance constant, if the inductance (L) is increased by $$\sqrt{3}$$ times and resistance(R) is increased  by 1.4 times, the resonant frequency now is:
    Solution
    Resonant frequency of a series LCR circuit is given by the formula 

    $$f=\dfrac { 1 }{ 2\pi \sqrt { LC }  } $$

    Hence, $${ f }_{ 0 }=\dfrac { 1 }{ 2\pi \sqrt { LC }  } $$

    In second case, $${ f }'=\dfrac { 1 }{ 2\pi \sqrt { L'C }  } =\dfrac { 1 }{ 2\pi \sqrt { \sqrt { 3 } LC }  } =\dfrac { 1 }{ { 3 }^{ \frac { 1 }{ 4 }  } } { f }_{ 0 }$$
  • Question 5
    1 / -0
    In a LR circuit of $$3\;mH$$ inductane and $$4\;\Omega$$ resistance, emf $$E=4\;cos\;(1000\;t)$$ volt is applied. The amplitude of current is:
    Solution
    Given :        $$L = 3mH  = 3 \times 10^{-3}  H$$                     $$R =4 \Omega$$
    Emf       $$E =  4 cos1000t$$
    $$\therefore$$   $$E_o = 4$$ volt        and      $$\omega = 1000$$
    Inductive reactance      $$X_L = \omega L  = 1000 \times 3 \times 10^{-3}  = 3  \Omega$$
    Impedance        $$Z = \sqrt{R^2 + X_L^2}  = \sqrt{4^2 + 3^2}  = 5  \Omega$$
    Current amplitude         $$I=  \dfrac{E_o}{Z}  = \dfrac{4}{5}  = 0.8  A$$
  • Question 6
    1 / -0
    In a purely inductive circuit, the current is
  • Question 7
    1 / -0
    If the power factor in a circuit is unit, then the impedance of the circuit is
    Solution

  • Question 8
    1 / -0
    Inductive reactance of a coil is expressed in
    Solution

  • Question 9
    1 / -0
    An AC generator producing $$10V$$ (rms) at $$200rad/s$$ is connected in series with a $$50\Omega $$ resistor, a $$400mH$$ inductor and a $$200\mu F$$ capacitor. The rms voltage across the inductor is 
    Solution
    Given :  $$E=10V, \  \ \ w=200, \ \ \ \ R=50\Omega , \ \ \ \ L=400mH, \ \ \ C=200\mu F\quad $$
    So, capacitive reactance  $$X_C = \dfrac{1}{wC} = \dfrac{1}{(200)(200\times 10^{-6})} = 25\Omega$$
    Inductive reactance  $$X_L = wL  =(200)(400\times 10^{-3}) =80\Omega $$
    Impedance  $$\quad Z=\sqrt { { R }^{ 2 }+{ \left( { X }_{ L }-{ X }_{ C } \right)  }^{ 2 } } =\sqrt { { 50 }^{ 2 }+{ (80-25) }^{ 2 } } $$
    $$\quad Z=74.3\Omega $$
    $$I=\cfrac { E }{ Z } =\cfrac { 10 }{ 74.3 } =0.13459A$$
    $${ E }_{ L }=I{ X }_{ L }=0.1345\times 80=10.76V$$
  • Question 10
    1 / -0
    An inductor and a resistor are connected to an ac supply of $$50 V$$ and $$50 Hz$$. If the voltage across the resistor is $$40 V$$ the voltage across the inductor will be:
    Solution
    Given: Supply voltage, $$V_S=50\ V$$
                Voltage across resistor, $$V_R=40\ V$$

    For an LR circuit:
    Applied voltage $$V_S=\sqrt { { V }_{ R }^{ 2 }+{ V }_{ L }^{ 2 } } $$   
    $$\Rightarrow  { V }_{ L }=\sqrt { { 50 }^{ 2 }-{ 40 }^{ 2 } } =30\ V$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now