Self Studies

Alternating Current Test - 75

Result Self Studies

Alternating Current Test - 75
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A $$200$$km long telegraph wire has a capacitance of $$0.014$$ $$\mu F/km$$. If it carries an alternating current of $$50\times 10^3$$Hz, what should be the value of an inductance required to be connected in series so that impedance is minimum?
    Solution
    Given, $$C'=0.014\mu F/km$$
    $$f=50\times 10^3$$Hz
    Total capacitance,
    $$C=C'\times 200$$
    $$=0.014\mu F\times 200=2.8\mu F$$
    For impedance to be minimum
    $$X_L=X_C,$$ i.e., $$\omega L=\displaystyle\frac{1}{\omega C}$$
    $$\displaystyle L=\frac{1}{\omega ^2C}$$
    $$=\displaystyle\frac{1}{4\pi^2l^2C}$$
    $$=\displaystyle\frac{1}{4\pi^2\times (50\times 10^3)^2\times 2.8\times 10^{-6}}$$
    $$=0.36\times 10^{-3}H=0.36\times 10^{-2}$$mH.
  • Question 2
    1 / -0
    In an L-R circuit, the voltage is given by $$V$$ as $$283 sin 314t$$. The current is found tc be $$4 \, sin \left ( 314t-\dfrac {\pi}{4} \right )$$Calculate the resistance of the circuit. 
    Solution
    In L-R series circuit current lags the voltage by an angle,
    $$\phi =tan^{-1}\left ( \dfrac{X_L}{R} \right )$$
    $$\phi =\dfrac{\pi}{4}, X_L=R, \omega L=R$$
    Given, $$V= 283 \, sin \, 314t$$
    Comparing with standard equation
    $$V=V_0 sin\, \omega\, t$$
    $$\omega =314$$
    $$314 L =R$$
    Further $$V_0 =i_0 |Z|$$
    $$283 = 4\sqrt{R^2+X^2_L}$$
    $$R^2 +(\omega L)^2=\left ( \dfrac{283}{4} \right )^2=5005.86$$
    $$2R^2 = 5005.56$$
    $$R= 50 \Omega $$
  • Question 3
    1 / -0
    A RC series circuit of R$$=15\Omega$$ and $$C=10\mu F$$ is connected to $$20$$ volt DC supply for very long time. Then capacitor is disconnected from circuit and connected to inductor of $$10$$mH. Find amplitude of current.
    Solution
    Given :  $$C = 10\mu F$$     $$V_o = 20$$ volts     $$L = 10mH$$
    Amplitude of the current  $$I_o=Q_o w=(CV_o)\dfrac{1}{\sqrt{LC}} = \sqrt{\dfrac{C}{L}}V_o$$
    $$\implies \ $$ $$I_o = \sqrt{\dfrac{10\times 10^{-60}}{10\times 10^{-3}}}\times 20 = 0.2\sqrt{10} A$$
  • Question 4
    1 / -0
    An L-C-R series circuit containing a resistance of $$R = 120 \Omega $$ has angular resonant frequency $$4 \times 10^5$$ rad/s. At resonance the voltage across resistance and inductance are 60 V and 90 V respectively. Then values of L and C are :
    Solution
    $$R= 120 \Omega , \omega _r=4 \times 10^5 $$ rad/sec
    $$V_R=60V, V_L=40V$$
    $$V_R=iR \Rightarrow 60 = i \times 120$$
    $$i= \dfrac{1}{2}A$$
    $$V_L=iX_L\Rightarrow 40=\dfrac{1}{2}X_L$$
    $$\therefore X_L=80 \Omega $$
    $$\omega _rL=80\Rightarrow 4 \times 10^5 L=80$$
    $$L=20 \times 10^{-5}H=0.2 mH$$
    $$X_C=X_L=80 \Rightarrow \dfrac{1}{\omega _rC}=80$$
    $$C=\dfrac{1}{80\omega }=\dfrac{1}{80\times 4\times 10^5}$$
    $$\dfrac{10^{-6}}{32}=\dfrac{1}{32}\mu F$$
  • Question 5
    1 / -0
    In the circuit diagram shown, $$X_C=100 \Omega,X_L=200 \Omega\, and \, R=100 \Omega$$. Effective current through the source is :

    Solution

  • Question 6
    1 / -0
    Two parallel wires in the plane of the paper are distance $$X_0$$ apart. A point charge is moving with speed u between the wires in the same plane at a distance $$X_1$$ from one of the wires. When the  wires carry current of magnitude I in the same direction, the radius of curvature of the path of the point charge is $$R_1$$. In contract, if the currents I in the two wires have directions opposite to each other, the radius of curvature of the path is $$R_2$$. If $$\dfrac{X_0}{X_1}=3$$, the value of $$\dfrac{R_1}{R_2}$$ is?
    Solution

  • Question 7
    1 / -0
    The equivalent inductance between $$A$$ and $$B$$ is:

    Solution

    Here, all the inductances are connected in parallel.
    Hence, the equivalent inductance between A and B is
    $$\displaystyle \frac{1}{L_{AB}} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} =  \frac{4}{4} = 1$$
    or $$L_{AB} = 1 H$$

  • Question 8
    1 / -0
    An alternating voltage given as $$V=100\sqrt { 2 } \sin { 100t } \quad $$is applied to a capacitor of $$1\mu F$$. The current reading of the ammeter will be equal to ______ mA.
    Solution
    Given :  $$C = 1\mu F$$
    On comparing the given voltage with  $$V = V_o  \ \sin wt$$
    we get  $$V_o =100\sqrt{2}$$  and  $$w = 100$$
    Capacitive reactance   $$X_C = \dfrac{1}{wC} = \dfrac{1}{100\times 10^{-6}} = 10^4\Omega$$
    Rms value of voltage  $$V_{rms} = \dfrac{V_o}{\sqrt{2}} = 100$$ volts
    Thus reading of ammeter  $$I_{rms} = \dfrac{V_{rms}}{I_{rms}} = \dfrac{100}{10^4} = 0.01 \ A = 10 \ mA$$
  • Question 9
    1 / -0
    An electrical device draws $$2 kW$$ power from ac mains voltage $$223 V(rms).$$ The current differs lags in phase by $$\phi = tan^{-1} \left ( -\dfrac{3}{4} \right )$$ as compared to voltage. The resistance R in the circuit is:
    Solution
    Here, $$P \, = \, 2 \, kW \, = \, 2 \, \times \, 10^3W$$
    $$V_{rms} \, = \, 233 \, V, tan \, \phi \, = \, -\dfrac{3}{4}$$
    $$As, \, P \, = \, \dfrac{V^2_{rms}}{Z}$$

    $$\Rightarrow \, Z \, = \, \dfrac{V^2_{rms}}{P} \, = \, \dfrac{(223)^2}{2000} \, =  \dfrac{49729}{2000} \, = \, 24.86 \, \Omega \, or \, Z \, = \, 25 \, \Omega$$

    $$\tan \, \phi \, = \, \dfrac{X_C \, - \, X_L}{R} \, = \, - \dfrac{3}{4} \, \therefore \, X_C \, - \, X_L \, = \, -\dfrac{3}{4} R.$$

    AS, $$Z^2 \, = \, R^2 \, + \, (X_C \, - \, X_L)^2$$

    $$\therefore \, (25)^2 \, = \, R^2 \, + \, \left(-\dfrac{3}{4} \, R \right)^2$$

    $$625 \, = \, \dfrac{25 \, R^2}{16}.$$

    $$R^2 \, = \, \dfrac{625 \, \times \, 16}{25} \,  \, \Rightarrow \, R \, = \, 20 \, \Omega$$
  • Question 10
    1 / -0
    In an oscillating $$LC$$ circuit the maximum charge on the capacitor is $$Q$$. The charge on the capacitor when the energy is stored equally between the electric and magnetic field is 
    Solution
    [C]  When capacitor is full charge, total energy of LC circuit is with capacitor
    $$\begin{array}{l} E=\dfrac { 1 }{ 2 } \, \, \dfrac { { { Q^{ 2 } } } }{ C } ,Q \to max\, \, { { charge } }\, \, on\, \, capacitor \\ max\, \, energy\, \, in\, \, Inductor=\dfrac { { LI_{ 0 }^{ 2 } } }{ 2 } ,{ I_{ 0 } }=current \end{array}$$
    According to the question
    Let q charge on capacitor when charge in equally shared between inductor and capacitor.
    $$\begin{array}{l} \therefore \dfrac { 1 }{ 2 } \left( { \dfrac { 1 }{ 2 } \dfrac { { { Q ^{ 2 } } } }{ C }  } \right) =\dfrac { 1 }{ 2 } \dfrac { { { q^{ 2 } } } }{ C }  \\ \Rightarrow { Q^{ 2 } }=2{ q^{ 2 } } \\ \therefore q=\dfrac { Q}{ { \sqrt { 2 }  } }  \end{array}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now