Self Studies

Alternating Current Test - 76

Result Self Studies

Alternating Current Test - 76
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A coil of inductance $$300\ mH$$ and resistance $$2\Omega$$ is connected to a source of voltage $$2V$$. The current reaches half of its steady state value in
    Solution
    Given,
    Inductance, $$L=300mH=0.3H$$
    Resistance, $$R=2\Omega$$
    Source voltage, $$V_0=2V$$
                                $$I=\dfrac{I_0}{2}$$
    The corrent flowing in the $$LR$$ circuit,
        $$I=I_0(1-e^{-Rt/L})$$

    $$\dfrac{I_0}{2}=I_0(1-e^{-Rt/L})$$

    $$1-e^{-Rt/L}=\dfrac{1}{2}$$

           $$e^{-Rt/L}=\dfrac{1}{2}$$

                $$\dfrac{Rt}{L}=ln2$$

    $$t=\dfrac{Lln2}{R}=\dfrac{ln (2)\times 0.3}{2}$$

    $$t=0.1sec$$
    The correct option is B.
  • Question 2
    1 / -0
    For the circuit shown in Fig. the voltage of the source at any instant is equal to 

    Solution

    The resulting velocity in an LCR circuit is the sum of the velocities in inductance and capacitance then adding the remaining voltage with that of the resistance voltage.

    The angle between the voltage source and current$$i$$gives the circuit phase angle.

    The voltage triangle for the LCR circuit is given as

    $${V_s} = \sqrt {V_R^2 + {{\left( {{V_L} - {V_c}} \right)}^2}} $$

  • Question 3
    1 / -0
    In the given figure, which voltmeter will read zero voltage at resonant frequency $$\omega$$ rad/sec?

    Solution
    At Resonant frequency,
    $$X_L = X_C$$
    multiply both sides by $$I_{rms}$$,
    $$V_{L(rms)}=V_{C(rms)}$$ (numerically)
    Since we know,
    Voltmeter reads rms voltage.
    Potential difference across $$V_4=\sqrt{V_{L(rms)}^2-V_{C(rms)}^2}$$    (as $$V_L$$ and $$V_C$$ are $$\pi$$ radian out of phase).
    Hence, Potential difference across $$V_4 = 0$$

    Option $$D$$ is the correct answer.
  • Question 4
    1 / -0
    A $$100\ volt$$ $$AC$$ source of angular frequancy $$500\ rad/s$$ is connected to a $$LCR$$ circuit with $$L=0.8\ H$$, $$C=5\ \mu F$$ and $$R=10\Omega$$, all connected in series. The potential difference across the resistance is 
    Solution

    The impedance of LCR circuit is given as,

    $$Z = \sqrt {\left[ {{R^2} + {{\left( {\omega L - \frac{1}{{\omega C}}} \right)}^2}} \right]} $$

    $$ = \sqrt {{{\left( {10} \right)}^2} + \left( {\left( {2 \times \pi  \times 500 \times 8.1 \times {{10}^{ - 3}}} \right) - \dfrac{1}{{2 \times \pi  \times 500 \times 12.5 \times {{10}^{ - 6}}}}} \right)} $$

    $$ = 10\;{\rm{ohm}}$$

    The rms value of the current is given as,

    $${I_{rms}} = \dfrac{{{V_{rms}}}}{Z}$$

    $$ = \frac{{100}}{{10}}$$

    $$ = 10\;{\rm{A}}$$

    The potential difference across the given resistor is given as,

    $${V_R} = I \times R$$

    $$ = 10 \times 10$$

    $$ = 100\;{\rm{V}}$$

    Thus, the potential difference across the resistor is $$100\;{\rm{V}}$$.

  • Question 5
    1 / -0
    The instantaneous voltages at three terminals marked X,Y and Z are given by
    $$V_x=V_0\sin { \omega t } ,$$
    $$V_x=V_0\sin { \sin { \left( \omega t+\dfrac { 2\pi  }{ 3 }  \right)  } } $$ and
    $$V_x=V_0\sin { \sin { \left( \omega t+\dfrac { 4\pi  }{ 3 }  \right)  } } $$
    An ideal voltmeter is configured to read rms value of the potential difference between its terminal. It is connected between points X and Y and then between Y and Z. The reading(s) of the voltmeter will be
    Solution
    $$V_{XY}=V_X-V_Y$$
    $$V_{XY}={ \left( { V }_{ XY } \right)  }_{ 0 }\sin { \left( \omega t+{ Q }_{ 1 } \right)  } $$
    Where $${ \left( { V }_{ XY } \right)  }_{ 0 }=\sqrt { { V }_{ 0 }^{ 2 }+{ V }_{ 0 }^{ 2 }-{ 2V }_{ 0 }^{ 2 }\cos { \dfrac { 2\pi  }{ 3 }  }  } =\sqrt { 3 } { V }_{ 0 }$$
    and $${ V }_{ XY }^{ rms }=\dfrac { { \left( { V }_{ XY } \right)  }_{ 0 } }{ \sqrt { 2 }  } =\sqrt { \dfrac { 3 }{ 2 }  } { V }_{ 0 }$$
    $$V_{YZ}=V_Y-V_Z$$
    $$V_{YZ}={ \left( { V }_{ YZ } \right)  }_{ 0 }\sin { \left( \omega t+{ Q }_{ 2 } \right)  } $$
    Where $${ \left( { V }_{ YZ } \right)  }_{ 0 }=\sqrt { { V }_{ 0 }^{ 2 }+{ V }_{ 0 }^{ 2 }-{ 2V }_{ 0 }^{ 2 }\cos { \dfrac { 2\pi  }{ 3 }  }  } =\sqrt { 3 } { V }_{ 0 }$$
    and $${ V }_{ YZ }^{ rms }=\dfrac { { \left( { V }_{ YZ } \right)  }_{ 0 } }{ \sqrt { 2 }  } =\sqrt { \dfrac { 3 }{ 2 }  } { V }_{ 0 }$$
  • Question 6
    1 / -0
    When $$100\ V\ d.c.$$ flows in a solenoid, the steady state current is $$10\ A$$. When $$100-V.\ ac$$. flows, the current drops to $$0.5\ A$$. If the frequency of ac. be $$50\ Hz$$, then the impedance and the inductance of the solenoid are.
    Solution
    Resistance of solenoid   $$R = \dfrac{V_{dc}}{I_{dc}} = \dfrac{100}{10} = 10\Omega$$
    When $$100 \ V$$ AC is applied, current becomes  $$0.5 \ A$$  i.e.  $$I_{ac} = 0.5 \ A$$
    Impedance of solenoid   $$Z = \dfrac{V_{ac}}{I_{ac}} = \dfrac{100}{0.5} = 200 \ \Omega$$
    Inductive reactance   $$X_L = \sqrt{Z^2 - R^2} = \sqrt{200^2 - 10^2} = 199.75\Omega$$
    Inductance of solenoid   $$L = \dfrac{X_L}{2\pi \ f} = \dfrac{199.75}{2\pi\times 50} = 0.64 \ H$$
  • Question 7
    1 / -0

    In a series  L-C-R circuit the voltage across the resistance , capacitance and inductance is 10 V each. If capacitance is short circuited, the voltage across the inductance will be:

    Solution

    The voltages across all the three components are equal, so the impedance will be the same.

    $$R = {X_L}$$

    The current is given as,

    $$I = \dfrac{V}{{\sqrt {{R^2} + {{\left( {{X_L}} \right)}^2}} }}$$

    $$I = \dfrac{{10}}{{R\sqrt 2 }}$$

    The potential drop across inductor is given as,

    $${V_L} = I{X_L}$$

    $${V_L} = IR$$

    $${V_L} = \dfrac{{10}}{{\sqrt 2 }}\;{\rm{V}}$$

  • Question 8
    1 / -0
    In the circuit shown in figure when the frequency of oscillator in increase, the reading of ammeter $${A}_{4}$$ is same as that of ammeter:

    Solution

  • Question 9
    1 / -0
    An inductor of reactance $$X_L=4\Omega$$ and resistor of resistance $$R=3\Omega$$ are connected in series with a voltage source of emf $$\varepsilon =(20V)[\sin (100\pi rad/s)t]$$. The current in the circuit at any time t will be?
    Solution
    The inductor and the resistor are in series. Given, $$R_{ L }=4\Omega ,\quad R=3\Omega $$
    Resultant impedance R=$$\sqrt { { R }_{ L }^{ 2 }+{ R }^{ 2 } } \\ =\sqrt { { 4 }^{ 2 }+{ 3 }^{ 2 } } \\ \quad =5\Omega $$
    In RL circuit, current due to inductor leads by resistance.
    Therefore phase angle, $$\phi ={ tan }^{ -1 }\dfrac { 3 }{ 4 } $$
                                               = $${ 37 }^{ 0 }$$
     Peak voltage, $${ e }_{ o }=20V$$
    Current, I=$$\dfrac { { e }_{ 0 } }{ R } =\dfrac { 20 }{ 5 } \\ =4A$$
    Since the current is leading. Therefore value of I is $$4A[sin(100\pi )t+{ 37 }^{ 0 }]$$

  • Question 10
    1 / -0
    In the given circuit find the ratio of $$i_{1}$$ to $$i_{2}$$. Where $$i_{1}$$ is the initial (at $$t = 0)$$ current, and $$i_{2}$$ is steady state (at $$t = \infty)$$ current through the battery.

    Solution
    Inductor is open circuited at $$t=0$$ and short circuited at $$t=\infty$$
    Hence, $${I}_{1}=\dfrac{10V}{10R}=1$$A
    $${I}_{2}=\dfrac{10V}{8R}=\dfrac{10}{8}$$A
    So, $$\dfrac{{I}_{1}}{{I}_{2}}=\dfrac{1}{\dfrac{10}{8}}=\dfrac{8}{10}=0.8$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now