Self Studies

Ray Optics and Optical Test - 65

Result Self Studies

Ray Optics and Optical Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Light travels in two media A and B with speeds 1.8×108ms11.8 \times { 10 }^{ 8 } m { s }^{ -1 } and 2.4×108ms1 2.4 \times { 10 }^{ 8 } m { s }^{ -1 } respectively. Then the critical angle between them is
    Solution

    The Critical angle for the medium is given by:
    sin11μ\Rightarrow\sin^{-1}\cfrac{1}{\mu}

    The refractive index of the medium A with respect to medium B is given by:
    AμB=v2v1^A\mu_{_B}=\cfrac{v_{2}}{v_{1}}

    μ=2418=43\mu=\cfrac{24}{18}=\cfrac{4}{3}

    Now the critical angle is obtained as:
    =sin134=\sin^{-1}\cfrac{3}{4}

  • Question 2
    1 / -0
    Choose the correct answer from alternatives given.
    The mixture of a pure liquid and a solution in a long vertical column (i.e, horizontal dimensions <<vertical dimensions) produces diffusion of solute particles and hence a refractive index gradient along the vertical dimension. A ray of light entering the column at right angles to the vertical is deviated from its original path. Find the deviation in travelling a horizontal distance d << h, the height of the column. 

    Solution
    Let us consider a light ray entering the column at (x, y) at 90o90^o to the vertical. θ\theta be the angle of incidence at x and it enter the thin column at height y. dθd\theta is the deviation of ray between x and (x + dx) emerging at (x +dx, y + dy ) at angle (θ+dθ)(\theta + d \theta).
    By snell's law, 
    μ(y)sinθ=μ(y+dy)sin(θ+dθ)\mu (y) \, sin \, \theta \, =\, \mu (y +dy) \, sin \, ( \theta \, + \, d \theta )
    =[μ(y)+dμdydy](sinθcosdθ+cosθsindθ) = \, \left[\mu (y) + \dfrac{d\mu}{dy} dy \right] \, (sin \, \theta \, cos \, d \theta \, + \, cos \, \theta \, sin \, d \theta)
    As dθissmall,cosdθ=1andsindθdθd \theta \, is \, small, \, cos \, d \theta \, =\, 1 \, and \, sin \, d \theta \, \approx \, d\theta
    μ(y)cosθdθ=dμdydysinθ;dθ=1μdμdytanθdy \therefore \mu(y) \, cos \, \theta \, d \theta \, =\, \dfrac{d \mu}{dy} dy \, sin \, \theta ; \, d \theta = \dfrac{-1 }{\mu} \dfrac{d \mu dy \, tan \, \theta}{dy}
    [tanθ=dxdyandraplacingμ(y)byμ]\left[ tan \, \theta \, = \, \dfrac{dx}{dy} and \, raplacing \, \mu (y) \, by \, \mu \right]
    θ=1μdμdyod dx=1μ(dμdy)d\theta = -\dfrac{1}{\mu} \dfrac{d \mu}{dy} \int_{o}^{d}  dx = -\dfrac{1}{\mu} \left(\dfrac{d \mu}{dy}\right) d

  • Question 3
    1 / -0
    A glass prism has a right-triangular cross-section ABC, with \angleA=90o=90^o. A ray of light parallel to the hypotenuse BC and incident on the side AB emerges grazing the side AC. Another ray, again parallel to the hypotenuse BC, incident on the side AC suffers total internal reflection at the side AB. Find the range of  the refractive index μ\mu of the material of the prism?
    Solution
    Since of is  parallel to BCB C.
    at ABA B
    (1) sin(90θ)=μsinr\sin (90-\theta)=\mu \sin r
    cosθμ=sinr\frac{\cos \theta}{\mu}=\sin r
    at ACA C
     μsin(90r)=(1)sin90μcosr=1sin2r+cos2r=1cos2θμ2+1μ2=1cos2θ+1=μ2(A)2sin2θ=μ2sin2θ=2μ2(A) \begin{array}{l} \mu \sin (90-r)=(1) \sin 90 \\ \qquad \mu \cos r=1 \\ \sin ^{2} r+\cos ^{2}r=1 \\ \qquad \begin{array}{l} \frac{\cos ^{2} \theta}{\mu^{2}}+\frac{1}{\mu^{2}}=1 \\ \cos ^{2} \theta+1=\mu^{2}-(A) \end{array} \\ \qquad 2-\sin ^{2} \theta=\mu^{2} \Rightarrow \sin ^{2} \theta=2-\mu^{2}-(A) \end{array}
    at AC\mathrm{AC}
    (1)sinθ=μsinr0(1) \sin \theta=\mu \sin r-0
    μsin(90γ)>1\mu \sin (90-\gamma)>1 ( at ABA B condition for TIR)T I R)
    cosx>1μ3\cos x>\frac{1}{\mu} \longrightarrow 3
    By (1)
    sinr=sinθμcosr=M2sin2θμ\sin r=\frac{\sin \theta}{\mu} \Rightarrow \cos r=\frac{\sqrt{M^{2}-\sin ^{2} \theta}}{\mu}
    μ2sin2θμ>1μ\frac{\sqrt{\mu^{2}-\sin ^{2} \theta}}{\mu}>\frac{1}{\mu}
    μ2>sin2θ+1\mu^{2}>\sin ^{2} \theta+1
    By equation AA
    μ2>2μ2+12μ2>3μ>32\begin{array}{l}\mu^{2}>2\mu^{2}+1\\2\mu^{2}>3\\\mu>\sqrt{\frac{3}{2}}\end{array}
    for refraction to be happened At AC
    sinθ=μsinr\sin \theta=\mu \sin r
    μsinr<1\mu \sin r<1
    sin2x<1μ2\sin ^{2} x<\frac{1}{\mu^{2}}
    By equation (3) cosγ>1μ1sin2γ>1μ2\cos \gamma>\frac{1}{\mu}\Rightarrow 1-\sin ^{2} \gamma>\frac{1}{\mu^{2}}
    SO
    11μ2<1μ21-\frac{1}{\mu^{2}}<\frac{1}{\mu^{2}}
     12μ2<Oμ<21-\frac{2}{\mu^{2}} < O\Rightarrow\mu<\sqrt{2}
     so 32<μ<2\text { so }{\sqrt{\frac{3}{2}}}<\mu<\sqrt{2}
    So option (A) is correct

  • Question 4
    1 / -0
    A monochromatic light passes through a glass slab (μ=32)\left (\mu = \dfrac {3}{2}\right ) a thickness 90 cm90\ cm in time t1t_{1}. If it takes t2t_{2} to travel the same distance through water (μ=43)\left (\mu = \dfrac {4}{3}\right ). The value of (t1t2)(t_{1} - t_{2}) is :
    Solution
    CC\to Speed of light in vacuum

    VV \to Speed of light in medium 

    Refractive Index,

    μ=C/V\mu = C/V

    time=distance/speedtime = distance/speed

    μ1=3/2(Glass)\mu_1 = 3/2 (Glass)

    V1=C1μ1=3×1083/2=2×108m/sV_1 = \dfrac{C_1}{\mu_1} = \dfrac{3\times 10^8}{3/2}= 2\times 10^8 m/s

    d=90cm=0.9md = 90cm = 0.9m

    t1=d/V1=0.9m/2×108m/st_1 = d/V_1 = 0.9m / 2\times 10^8 m/s

    t1=0.45×108st_1 = 0.45 \times 10^{-8}s

    μ2=4/3(water)\mu_2 = 4/3 (water)

    V2=C1μ2=3×108m/s4/3=2.25×108m/sV_2 = \dfrac{C_1}{\mu_2} = \dfrac{3 \times 10^8 m/s}{4/3} = 2.25\times 10^8 m/s

    d=90cm=0.9md = 90cm = 0.9m

    t2=dv2=0.90.25×108m/st_2 = \dfrac{d}{v_2} = \dfrac{0.9}{0.25\times 10^8m/s} 

    t2=0.4×108st_2 = 0.4\times 10^{-8}s

    t1t2=0.45×108s0.40×108=0.05×108st_1-t_2 = 0.45\times 10^{-8}s - 0.40 \times 10^{-8}= 0.05\times 10^{-8} s

    t1t2=5×1010st_1-t_2 = 5\times10^{-10} \, s 
  • Question 5
    1 / -0
    A ray of light is incident on a thick slab of glass of thickness t as shown in the figure. The emergent ray is parallel to the incident ray but displaced sideways by a distance d. if the angles are small then d is

    Solution
    The lateral shift occured in the ray is given by:
    d=tsin(ir)cosrd=\cfrac{t\sin(i-r)}{\cos r}

    For small angle, sin(ir)ir\sin(i-r)\approx i-r
    cosr1\cos r\approx 1

    d=t(ir)1=it(1ri)d=\cfrac{t(i-r)}{1}=it(1-\cfrac{r}{i})

  • Question 6
    1 / -0
    Ocean appears blue due to _____________________.
    Solution
    The ocean appears blue due to the scattering of light by water particles. When sunlight passes through the atmosphere, the fine particles in the air scatter the blue color (shorter wavelengths) more strongly than red. 
  • Question 7
    1 / -0
    In the given figure, the radius of curvature of a curved surface for both the piano-convex and plano-concave lens is 10 cm and refractive index for both is 1.5. The location of the final image after all the refractions through lenses is:

    Solution
    The focal length of the plano - convex lens is 
    1f=(1.51) (1+101)=120\dfrac{1}{f} \, = \, (1.5 \, - \,1) \left ( \dfrac{1}{+10} \, - \, \dfrac{1}{\infty }\right ) \, = \, \dfrac{1}{20}
    Focal length of plano - concave lens is 
    1f=(1.51) (1  110)=120\dfrac{1}{f} \, = \, (1.5 \, - \,1) \left ( \dfrac{1}{\infty} \, - \, \dfrac{1}{10}\right ) \, = \, \dfrac{-1}{20}
    since parallel beams are incident on the lens, its image from plano - concave lens will be formed at +20+20 cm from it (at the focus) and will act as an object for the plano - concave lens. since the two lens are at a distance of 1010 cm from each other, therefore, for the next lens
    u=+10cm.u = +10 cm.
    v=ufu+f=10×201020\therefore v = \dfrac{uf}{u + f} = \dfrac{10 \, \times \, 20}{10 - 20} 
    =20cm= 20 cm
  • Question 8
    1 / -0
    Choose the correct answer from alternatives given.
    A ray of light travelling in a medium of refractive index μ\mu is incident at an angle θ\theta on a composite transparent plate consisting of 50 plates of RI. 1.0lμ,1.02μ,1.03μ,....,1.50μ.1.0l\mu, \, 1.02\mu, \, 1.03\mu,\, ...., \, 1.50\mu. The ray emerges from the composite plate into a medium of refractive index 1.6μ1 .6\mu at  angle x. Then:

    Solution

    According to Snell's law, μsinθ=1.6μsinx\mu sin \theta \, = \, 1.6 \mu sin x
    sinx=58sinθ\therefore sin \, x = \, \dfrac{5}{8} \, sin \theta

  • Question 9
    1 / -0
    A point object O is placed at a distance of 20 cm in front of a equiconvex lens (aμg=1.5)(^a\mu_g \, = \, 1.5) of  focal length 10 cm. The lens is placed on a liquid of refractive index 2 as shown in the figure. An image will be formed at a distance h from a lens. The value of h is

    Solution
    As 1f=(μ1)[1R11R2]\dfrac{1}{f} = (\mu - 1) \left[\dfrac{1}{R_1} - \dfrac{1}{R_2}\right]
    110=(1.51)(1R+1R)=0.5×2RR=10cm\dfrac{1}{10} = (1.5 - 1) \left(\dfrac{1}{R} + \dfrac{1}{R} \right) = 0.5 \times \dfrac{2}{R} \Rightarrow R = 10 \, cm
    μ2vμ1u=μ2μ1R\therefore \dfrac{\mu_2}{v} - \dfrac{\mu_1}{u} = \dfrac{\mu_2 - \mu_1}{R}
    Refraction from first surface, 
    1.5v1120=1.51+10v1=\dfrac{1.5}{v_1} - \dfrac{1}{-20} = \dfrac{1.5 - 1}{+10} \Rightarrow v_1 = \infty
    For the second surface, 
    2v1.5=21.510v=40cm  h=40cm\dfrac{2}{v} - \dfrac{1.5}{\infty} = \dfrac{2 - 1.5}{-10} \Rightarrow v = -40 \, cm \,\, \therefore h = 40 \, cm
  • Question 10
    1 / -0
    A ray incident at a point at an angle of incidence of 60o{60}^{o} enters a glass sphere of R.l.n=3R.l.n=\sqrt 3 and is reflected and refracted at the further surface of the sphere. The angel between the reflected and refracted rays at this surface is
    Solution
    Refraction at PP, sin60o sinr1 =3 \dfrac { \sin { 60 }^{o}  }{ \sin { { r }_{ 1 } }  } =\sqrt { 3 }
    sinr1=1/2r1=30\Rightarrow \sin { { r }_{ 1 } } =1/2 \quad \Rightarrow { r }_{ 1 }=30
    Since r2=r1r2=30{ { r }_{ 2 } } ={ r }_{ 1 } \quad \therefore \quad{ r }_{ 2 }=30
    Reflection at QQ, sinr2 sini2 =13 \dfrac { \sin { { r }_{ 2 } }  }{ \sin { { i }_{ 2 } }  } =\dfrac { 1 }{ \sqrt { 3 }  }
    Putting R2=30o{R}_{2}={30}^{o} we obtain i2=60o{i}_{2}={60}^{o}
    Reflection at Q,r2=r2Q, {r}^{\prime }_{2}={r}_{2}
    α=180o(r2 +r2)=180o(30o+60o)=90o\therefore \quad \alpha =180^{o}-({ r }^{ \prime  }_{ 2 }+{ r }_{ 2 })=180^{o}-(30^{o}+60^{o})=90^{o}
    Hence (C) is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now