$$ \begin{array}{l} \text { equation of sphere } x^{2}+y^{2}=R^{2} \\ \text { at point, } \quad \begin{array}{rl} =R^{2} & y=+\dfrac{\sqrt{3}}{2} R \\ x^{2}+\left(\dfrac{\sqrt{3 R}}{2}\right)^{2}\\ x^{2} & =R^{2}-\dfrac{3 R^{2}}{4} \\ x=\dfrac{R}{2} \end{array} \end{array} $$
considers $$\triangle P H O$$
$$\begin{aligned} \tan \theta=& \dfrac{\dfrac{\sqrt{3} R}{2}}{\dfrac{3 R}{2}} \\ \tan \theta=\dfrac{1}{\sqrt{3}} \\ \theta &=30^{\circ} \end{aligned}$$
Consider $$\triangle \mathrm{PH} \mathrm{c}$$
$$\begin{array}{l}\tan \phi=\dfrac{\frac{\sqrt{3 P}}{2}}{\dfrac{R}{2}}\\\tan\phi=\sqrt{3}\\\phi=60^{\circ}\end{array}$$
So, incident angle at $$P=60^{\circ}$$
refracted angle at $$p=30^{\circ}$$
$$\mu_{1} \sin i=\mu_{2} \sin \gamma \quad$$ at point $$p$$
(1) $$\sin 60=\mu \sin 30$$
$$\qquad \mu=\sqrt{3}]-1$$
$$\mu_{1} \sin i=\mu_{2} \sin \gamma$$ at point 0
$$\begin{aligned} \sqrt{3} \sin 30 &=(1)\sin\alpha\\\alpha &=60^{\circ} \end{aligned}$$
slope of emergent ray $$=\tan (90+\alpha)$$
$$=-\cot 60=-\dfrac{1}{\sqrt{3}}$$
equation of emergent ray $$(x-R)-\dfrac{1}{\sqrt{3}}=y$$
By equation (1), option $$B$$ is correct, option $$c$$ is incorrect