Given,
Thickness of the dielectric slab, \({t}=1 {~cm}=10^{-2} {~m}\)
Dielectric constant, \(\varepsilon_{{r}}={K}=5\)
Area of the plates of the capacitor, \(A=0.01 {~m}^{2}=10^{-2} {~m}^{2}\)
Distance between parallel plates of the capacitor, \({d}=2 {~cm}=2 \times 10^{-2} {~m}\)
We know that:
Capacity with air in between the plates,
\(C_{0}=\frac{\epsilon_{0} A}{d}\)
where, \(\epsilon_{0}=8.854 \times 10^{-12} \)
\(=\frac{8.85 \times 10^{-12} \times 10^{-2}}{2 \times 10^{-2}}\)
\({C}_{0}=4.425 \times 10^{-12}\) Farad
Capacity with dielectric slab in between the plates,
\({C}=\frac{\epsilon_{0} {~A}}{{~d}-{t}\left(1-\frac{1}{{~K}}\right)}\)
\(=\frac{8.85 \times 10^{-12} \times 10^{-2}}{\left(2 \times 10^{-2}\right)-10^{-2}\left(1-\frac{1}{5}\right)}\)
\(C=7.375 \times 10^{-12}\) Farad
Increase in capacity on introduction of dielectric:
\({C}-{C}_{0}=\left(7.375 \times 10^{-12}\right)-\left(4.425 \times 10^{-12}\right)\)
\(=2.95 \times 10^{-12}\) Farad
Hence, the correct option is (C).