Self Studies

Lines and Angles Test - 20

Result Self Studies

Lines and Angles Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If angle $$P$$ and angle $$Q$$ are supplementary and the measure of angle $$P$$ is $$60^o$$, then the measure of angle $$Q$$ is: 
    Solution
    Option (a) is correct.
    Given that $$\angle P +\angle Q=180^o$$
    $$\Rightarrow 60^o +\angle Q=180^o$$
    $$\Rightarrow \angle Q=180^o -60^o$$
    $$\Rightarrow \angle Q=120^o$$
  • Question 2
    1 / -0
    In the figure, if OP||RS, $$\angle OPQ=110^0 and \angle QRS =130^0$$, then $$\angle PQR$$  is equal to

    Solution
    As OP||RS,
    $$\angle$$ PQR $$ =180 -(180-110)-(180-130) $$=$$60$$
  • Question 3
    1 / -0
    Lines PQ and RS intersect at O. If $$\angle POS = 2 \angle SOQ$$, then the four angles at O are:
    Solution
    PQ and RS intersect at O. then,
    $$\angle POS = \angle QOR$$ (vertically opposite angles)
    $$\angle SOQ =\angle POR$$ (vertically  opposite angles)
    Given $$\angle POS = 2\angle SOQ$$
    Sum of all angles = 360
    $$\angle POS + \angle SOQ + \angle QOR +\angle ROP = 360$$
    $$6\angle SOQ  = 360$$
    $$\angle SOQ = 60$$
    Hence, the four angles = $$60^o, 60^0, 120^0, 120^0$$.
  • Question 4
    1 / -0
    If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? 
    Solution
    Let $$AB$$ and $$CD$$ be two lines Intersecting at $$O$$, such that, $$\angle AOD = 90^{\circ}$$

    Now, $$\angle AOD = \angle COB = 90^{\circ}$$  (Vertically opposite angles)
    $$\Longrightarrow \angle AOD + \angle DOB = 180^o$$ (Angles on a straight line)
    $$\Longrightarrow 90 + \angle DOB = 180^o$$
    $$\angle DOB = 90^{\circ}$$

    $$\angle DOB = \angle AOC = 90^{\circ}$$ (Vertically opposite angles)
    Thus, all angles are $$90^{\circ}$$.
  • Question 5
    1 / -0
    What value of $$\angle$$FEC will make $$CD \parallel EF$$, and AB||CD ?

    Solution
    Consider AB || CD || EF
    then , $$\angle ABC = \angle BCD = 65^{\circ}$$ (corresponding angles)
    Therefore,  $$\angle BCE + \angle ECD = 65^0$$
    $$30 + \angle ECD = 65^0$$
    $$\angle ECD = 35^{\circ}$$
    Now, $$\angle FEC + \angle ECD = 180^{\circ}$$ (supplementary angles)
    $$ 35 + \angle FEC = 180$$
    $$\angle FEC = 145^{\circ}$$.
  • Question 6
    1 / -0
    From the given figure, we can say that

    Solution
    Sum of angle between the lines $$l, m$$
    $$32 + 48 = 80^{\circ}$$
    Since, the sum is not $$180^{\circ}$$, hence, $$l$$ is not parallel to $$m$$.

    Sum of angles between the lines $$p, q$$
    $$73 + 106 = 179^{\circ}$$
    The sum of angles between two lines is less than $$180^{\circ}$$, thus $$p$$ is not parallel to $$q$$
  • Question 7
    1 / -0
    In the given figure, $$l||m||n$$, If $$x : y = 5 : 4$$, then the measure of angle z is :

    Solution
    Let $$x=5a$$ and $$y=4a$$

    Now $$\angle y+\angle 1=180^{\circ}$$ (Angle made on straight line $$(n)$$ are supplementary)

    $$\Rightarrow 4a+\angle 1={ 180 }^{ \circ  }\\ \Rightarrow \angle 1={ 180 }^{ \circ  }-4a..........(i)$$

    Now $$m||n$$ and $$t$$ is transversal

    $$\therefore \angle x=\angle 1$$   (Corresponding angles)

    $$\Rightarrow 5a=\angle 1\\ \Rightarrow 5a={ 180 }^{ \circ  }-4a\\ \Rightarrow 9a={ 180 }^{ \circ  }\\ \Rightarrow a={ 20 }^{ \circ  }$$

    Now $$\angle y=4a=4\times { 20 }^{ \circ  }={ 80 }^{ \circ  }$$

    Now $$l||n$$ and $$t$$ is transversal.

    $$\therefore \angle z=\angle y$$  (Alternate angles)

    $$\Rightarrow \angle z={ 80 }^{ \circ  }$$

  • Question 8
    1 / -0
    The angle which exceeds its complement by $$20^{\circ}$$ is:
    Solution
    Let the required angle be $$x$$.
    We knows, complementary angles $$=$$ Sum of two angles is $$90^o$$.
    $$\therefore x = (90^o - x ) + 20^o $$
    $$\therefore$$ $$x = 90^o - x + 20^o$$
    $$\therefore$$ $$ 2x = 110^o$$
    $$\therefore x = 55^o$$.
    Hence, option $$B$$ is correct.
  • Question 9
    1 / -0
    In the given figure, $$\angle QPB$$  is,

    Solution
    In the given figure,
    $$\angle APR + \angle RPQ + \angle QPB = 180^{\circ}$$
    $$2x + 3x+x = 180^{\circ}$$
    $$6x = 180^{\circ}$$
    $$x = 30^{\circ}$$
  • Question 10
    1 / -0
    In the given figure, $$ AE\parallel BD $$,  $$ AC\parallel ED $$ and $$ AB = AC $$. Find $$ \angle a  $$.

    Solution
    Here, $$\angle EDC = 58^{\circ}$$ (Vertically opposite angles)

    Given $$AE \parallel CD$$ so,
    $$\implies$$ $$\angle c = \angle EDC = 58^{\circ}$$              [Corresponding angles]

    Also, $$AC \parallel ED$$
    $$\implies$$ $$\angle ACB =\angle EDC= 58^{\circ}$$                 [Corresponding angles)

    Since, $$AB = AC$$
    $$\implies$$ $$\angle ABC = \angle ACB=58^o$$                         [Isosceles triangle property]

    Now, in $$\triangle ABC$$,
    $$\angle ABC + \angle ACB + \angle BAC = 180^o $$
    $$\implies$$ $$58^o + 58^o + \angle a = 180^o$$
    $$\implies$$ $$116^o + \angle a = 180^o$$
    $$\implies$$ $$\angle a = 180^o - 116^o$$
    $$\implies$$ $$\angle a = 64^{o}$$

    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now