Self Studies
Selfstudy
Selfstudy

Squares and Square Roots Test - 17

Result Self Studies

Squares and Square Roots Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following is a pythagorean triplet?
    Solution
    $$\textbf{Step1-Check each option which satisfy the condition of  Pythagorean triplet}$$
                  $$\text{(a,b,c) will be a Pythagorean triplet if its satisfies the condition } a^2+b^2=c^2$$
                  $$\text{Here, we will check the option on by one till we get the answer}$$
                  $$\text{In option A we have (a,b,c) = (2,3,5)}$$
                  $$\Rightarrow 2^2+3^2=5^2$$
                  $$\Rightarrow 4+9=25$$
                  $$\Rightarrow 13\neq 25$$
                  $$\text{Hence option A is not correct}$$

                  $$\text{In option B we have (a,b,c) = (5,7,9)}$$
                  $$\Rightarrow 5^2+7^2=9^2$$
                  $$\Rightarrow 25+49=81$$
                  $$\Rightarrow 74 \neq 81$$
                  $$\text{Hence option B is not correct}$$

                  $$\text{In option C we have (a,b,c) = (6,9,11)}$$
                  $$\Rightarrow 6^2+9^2=11^2$$
                  $$\Rightarrow 36+81=121$$
                  $$\Rightarrow  117\neq 121$$
                  $$\text{Hence option C is not correct}$$

                  $$\text{In option D we have (a,b,c) = (8,15,17)}$$
                  $$\Rightarrow 8^2+15^2=17^2$$
                  $$\Rightarrow 64+225=286$$
                  $$\Rightarrow 286=286$$
                  $$\text{Hence option D is correct}$$

    $$\textbf{Hence option D is correct}$$
  • Question 2
    1 / -0
    Check whether $$1152$$ is a perfect square. If not, then find the least number by which it should be divided so that, the quotient becomes a perfect square. Also, find the square root of the quotient.
    Solution
    $$1152=\underline{2\times2}\times\underline{2\times2}\times\underline{2\times2}\times2\times\underline{3\times3}$$
    All the prime factors except $$2$$ can be paired.
    Thus $$1152$$ is not a perfect square
    Thus, we should divide $$1152$$ by $$2$$ to get the perfect square.
    $$1152\div2=576$$
    $$576=\underline{2\times2}\times\underline{2\times2}\times\underline{2\times2}\times\underline{3\times3}$$
    Thus, the required least number is $$2\;and\;\sqrt{576}=24$$.
  • Question 3
    1 / -0
    Find the square root of each of the following correct to three places of decimal.
    $$17$$
    $$1.7$$
    $$2.5$$
    $$\displaystyle\frac{7}{8}$$

    Solution
    $$17$$

    $$4.123$$
    $$4$$
    $$+4$$
    $$17$$
    $$16$$
    $$822$$
    $$+2$$
    $$100$$
    $$81$$
    $$8243$$$$1900$$
    $$1644$$
    $$25600$$
    $$24729$$
                     
    $$871$$
    $$\therefore$$ The square root of $$17=4.123$$

    $$1.7$$
    $$0$$$$1.303$$
    $$1$$
    $$+1$$
    $$1.7$$
    $$1$$
    $$23$$
    $$+3$$
    $$70$$
    $$69$$
    $$2603$$$$10000$$
    $$7809$$
    $$1191$$

    $$\therefore$$ The square root of $$1.7=1.303$$

    $$2.5$$
    $$0$$$$1.581$$
    $$1$$
    $$+1$$
    $$2.5$$
    $$1$$
    $$25$$
    $$+5$$
    $$150$$
    $$125$$
    $$308$$
    $$+8$$
    $$2500$$
    $$2464$$
    $$3161$$$$3600$$
    $$3161$$
                     
    $$439$$
    $$\therefore$$ The square root of $$2.5=1.581$$

    $$\frac{7}{8}$$
    $$8$$$$70$$
    $$64$$
    $$0.875$$
    $$60$$
    $$56$$
    $$40$$
    $$40$$
               
     $$0$$

    $$0.935$$
    $$0$$$$0.875$$
    $$0$$
    $$9$$
    $$9$$
    $$87$$
    $$81$$
    $$183$$
    $$+3$$
    $$650$$
    $$549$$
    $$1865$$$$10100$$
    $$9325$$
    $$925$$
    $$\therefore$$ The square root of $$\frac{7}{8}=0.935$$
  • Question 4
    1 / -0
    Find the least number which must be added to each of the following numbers so as to get a perfect square. Also, find the square root of the perfect square so obtained.
    $$525$$
    $$1750$$
    Solution
    We try to find out the square root of $$525$$.
    $$\;\;\;\;\;\;\;22\\ \overline { 2\; \; \mid \;\;\bar { 5 }\bar { 25 }  } \\ { { \; \; \; \; \; \mid -4 } }\\ { \overline { 42\mid\;\; 125 }  }\\ \; \; \; { \underline { \; \; \mid -84 }  }\\ \; \; \; \; \mid \; \; 41$$
    We observe that
    $$(22)^2\,<\,525\,<\,(23)^2$$
    The required number to be added
    $$=(23)^2-525$$
    $$=529-525=4$$
    $$\therefore$$ Required perfect square number
    $$=525+4=529$$
    Clearly, $$\sqrt{529}=23$$.
    We try to find out the square root of $$1750$$
    $$\;\;\;\;\;\;\;41\\ \overline { 4\; \; \mid \;\;\bar { 17 }\bar { 50 }  } \\ { { \; \; \; \; \; \mid -16 } }\\ { \overline { 81\mid\;\; 150 }  }\\ \; \; \; { \underline { \; \; \mid -81 }  }\\ \; \; \; \; \mid \; \; 69$$
    We observe that $$(41)^2\,<\,1750\,<\,(42)^2$$.
    The required number to be added
    $$=(42)^2-1750$$
    $$=1764-1750$$
    $$=14$$
    $$\therefore$$ Required perfect square number
    $$=(1750+14)=1764$$
    Clearly, $$\sqrt{1764}=42$$.
  • Question 5
    1 / -0
    What could be the possible one's digits of the square root of the following numbers?
    $$9801$$
    $$99856$$
    $$99800$$
    $$657666025$$
    Solution
    As we know that all the perfect square number ends with  $$1,4,9,6,5,00$$
    $$9801 \Rightarrow$$ Possible one's digits $$=1\;or\;9\;\;(\because\;1\times1=1.9\times9=81)$$
    $$99856 \Rightarrow$$ Possible one's digits $$=4\;or\;6$$
    $$99800 \Rightarrow$$ Possible one's digit $$=0$$
    $$657666025 \Rightarrow$$ Possible one's digit $$=5$$
  • Question 6
    1 / -0
    Which one of the following cannot be the square of a natural number ?
    Solution

    As we know that all the perfect square number ends with  $$1,4,9,6,5,00$$

    So, the square of a natural number never ends in $$ 2$$

    $$\therefore 143642$$ is not the square of a natural number.

  • Question 7
    1 / -0
    The square root of an odd number
    Solution
    The square root of an odd number is odd number. We can check this by taking examples as follows:
    $$\sqrt[2]{25}=5$$
    Square root of odd number, $$25$$ is a odd number $$5$$.

    $$\sqrt[2]{49}=7$$
    Square root of odd number, $$49$$ is a odd number $$7$$.

    Hence, we can say that the square root of odd number is odd. Option C is correct.

  • Question 8
    1 / -0
    Write a Pythagorean triplet whose one member is $$16$$ :
  • Question 9
    1 / -0
    What is the smallest number by which 338 is multiplied or divided to make a perfect square?
    Solution
    The number $$338$$ is not a perfect square itself.
    $$338 = 2\times 169 $$
    When we divide it by $$2$$, the quotient left is $$169$$ which is a square of $$13$$.
    Therefore, divide it by $$2$$.
    Answer is Option $$D$$
  • Question 10
    1 / -0
    Write a Pythagorean triplet whose one member is 14:
    Solution
    Let us assume 2 m=14 therefore m=7
    Now $$ \displaystyle m^{2}+1=7^{2}+1=49+1=50 $$
    And $$ \displaystyle m^{2}-1=7^{2}-1=49-1=48 $$
    Test : $$ \displaystyle14^{2}+48^{2}=196+1304=2500=50^{2} $$
    Hence the triplet is 14,48 and 50 Answer 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now