Self Studies
Selfstudy
Selfstudy

Number Systems Test - 28

Result Self Studies

Number Systems Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number obtained on rationalising the denominator of $$\dfrac{1}{\sqrt{9}-\sqrt{8}}$$ is ?
    Solution
    We use the identity $$\left( \sqrt { a } +\sqrt { b }  \right) \left( \sqrt { a } -\sqrt { b }  \right) =a-b$$.

    So, $$\dfrac { 1 }{ \sqrt { 9 } -\sqrt { 8 }  } =\dfrac { 1 }{ \sqrt { 9 } -\sqrt { 8 }  } \times \left( \dfrac { \sqrt { 9 } +\sqrt { 8 }  }{ \sqrt { 9 } +\sqrt { 8 }  }  \right) \\$$

    $$ =\dfrac { \sqrt { 9 } +\sqrt { 8 }  }{ 9-8 }$$ 

    $$=\dfrac { \sqrt { 9 } +\sqrt { 8 }  }{ 1 } $$

    $$=\sqrt { 3^2 } +\sqrt { 4\times 2 } $$

    $$=3+2\sqrt { 2 }$$  
  • Question 2
    1 / -0
    The number obtained on rationalizing the denominator of $$\dfrac {1}{\sqrt {7} - 2}$$ is
    Solution
    We use the identity $$\left( a+\sqrt { b }  \right) \left( a-\sqrt { b }  \right) ={ a }^{ 2 }-b$$.
    Multiply and divide $$\dfrac { 1 }{ \sqrt { 7 } -2 }$$ by $$\sqrt { 7 } +2$$ to get 
    $$\dfrac { 1 }{ \sqrt { 7 } -2 } \times \dfrac { \sqrt { 7 } +2 }{ \sqrt { 7 } +2 } =\dfrac { \sqrt { 7 } +2 }{ 7-4 } =\dfrac { \sqrt { 7 } +2 }{ 3 }$$ 

    Hence, option $$A.$$
  • Question 3
    1 / -0
    Which of the following is an irrational number ?
    Solution
    In the given options, 
    $$\sqrt { 225 }=15$$ so, it is not an irrational number.

    Options $$C$$ and $$D$$ are terminating decimals. So, they are also rational numbers.

    $$\sqrt{23}4.7958\dots$$ which is a non-terminating non-repeating decimal hence, it is an irrational number. 

    So, option $$A$$ is the correct answer.
  • Question 4
    1 / -0
    $$\pi$$ is a/an _______ .
    Solution
    The value of $$\pi$$ is equal to $$ 3.14159265358\dots$$ which is a non-terminating and non-repeating decimal hence, $$\pi$$ is an irrational number.
  • Question 5
    1 / -0
    $$\pi$$ is an ________ while $$\dfrac{22}{7}$$ is rational.
    Solution
    The value $$\dfrac{22}7$$ is a rational number, as it can be expressed in the form $$\dfrac pq$$. 
    We consider it as an approximate value of $$\pi$$ because $$\pi$$ is close to $$\dfrac{22}7$$. 
    But actually its value is $$3.14159....$$, which is neither terminating nor repeating. 
    Thus, $$\pi $$ is irrational, but $$\dfrac{22}7$$ is rational.
  • Question 6
    1 / -0
    Which one of the following is an irrational number ?
    Solution


    $$  {\textbf{Step -1: Observe the options given and find the non-terminating and non-repeating number.}} $$

                    $$  {\text{As }}0.4014001400014.....{\text{is non - terminating and non-repeating so it is a irrational number}}{\text{.}} $$

    $$  {\textbf{Final Answer: Hence, the correct answer is option D}}{\text{.}} $$ 

  • Question 7
    1 / -0
    If $$\displaystyle \frac{\sqrt{3}-1}{\sqrt{3}+1} = a+b \sqrt{3}$$, find the values of $$a$$ and $$b$$.
    Solution
    $$\displaystyle \frac{\sqrt{3}-1}{\sqrt{3}+1}$$

    $$=\displaystyle \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$$

    $$=\displaystyle \frac{(\sqrt{3}-1)^2}{(\sqrt{3})^2-1^2}$$

    $$=\displaystyle \frac{3+1-2\sqrt{3}}{3-1}$$

    $$=\displaystyle \frac{4-2 \sqrt{3}}{2}$$

    $$=\displaystyle 2-\sqrt{3}$$

    $$= a+b\sqrt{3}$$

    $$a=2,b=-1$$
  • Question 8
    1 / -0
    Simplify:
    $$5\sqrt{2} -\sqrt{98}+\sqrt{162}$$
    Solution
    $$5\sqrt{2} -\sqrt{98}+\sqrt{162}$$
    $$=\sqrt{50} -\sqrt{98}+\sqrt{162}$$
    $$=5\sqrt{2} -7\sqrt{2}+9\sqrt{2}$$
    $$=\sqrt{2}(5-7+9)=7\sqrt{2}$$
  • Question 9
    1 / -0
    Simplify:
    $$4\sqrt{8} + 4\sqrt{2} - 3\sqrt{2}$$
    Solution
    $$4\sqrt{8} + 4\sqrt{2} - 3\sqrt{2}$$
    $$=4\sqrt{2^2 \times 2} + \sqrt{2^4 \times 2} - 3\sqrt{2}$$
    $$=((4 \times 2)+4 -3) \sqrt{2}$$
    $$=9 \sqrt{2}$$
  • Question 10
    1 / -0
    Simplify:
    $$7\sqrt{5} - 4\sqrt{5}+\sqrt{125}$$
    Solution
    $$7\sqrt{5} - 4\sqrt{5}+\sqrt{125}$$
    $$=7\sqrt{5} - 4\sqrt{5}+5\sqrt{5}$$
    $$=(7-4+5)\sqrt{5}=8\sqrt{5}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now