Self Studies
Selfstudy
Selfstudy

Number Systems Test - 37

Result Self Studies

Number Systems Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$[1^{-2} + 2^{-2}+3^{-2}] \times 6^2$$ is ______.
    Solution
    $$\left[\dfrac{36}{1} + \dfrac{36}{4} + \dfrac{36}{9} \right]$$
    $$[1^{-2} + 2^{-2}+3^{-2}] \times 6^2 = \left[\dfrac{1}{1^2} + \dfrac{1}{2^2} + \dfrac{1}{3^2} \right] \times 6^2$$
    $$=\left[\dfrac{1}{1} + \dfrac{1}{4} + \dfrac{1}{9} \right] \times 36$$
    $$\left[\dfrac{36+9+4}{36}\right] \times 36$$
    $$\left[\dfrac{49}{36}\right] \times 36=49$$
  • Question 2
    1 / -0
    A rational number between $$\sqrt {2}$$ and $$\sqrt {3}$$ is
    Solution
    We know that
    $$\sqrt {2} = 1.4142135....$$ and $$\sqrt {3} = 1.732050807 ...$$
    So, we can clearly see that $$1.5$$ is a rational number and it lies between $$1.4142135...$$ and $$1.732050807...$$

    Hence, $$(C)$$ is the correct answer.
  • Question 3
    1 / -0
    After rationalizing the denominator of $$\dfrac {7}{3\sqrt {3} - 2\sqrt {2}}$$, we get the denominator as
    Solution
    $$\dfrac {7}{3\sqrt {3} - 2\sqrt {2}} = \dfrac {7}{3\sqrt {3} - 2\sqrt {2}} \times \dfrac {3\sqrt {3} + 2\sqrt {2}}{3\sqrt {3} + 2\sqrt {2}}$$

    $$= \dfrac {7(3\sqrt {3} + 2\sqrt {2})}{(3\sqrt {3})^{2} - (2\sqrt {2})^{2}} = \dfrac {7(3\sqrt {3} + 2\sqrt {2})}{27 - 8}$$

    $$= \dfrac {7(3\sqrt {3} + 2\sqrt {2})}{19}$$
    Therefore, we get the denominator as $$19$$.
    Hence, $$(B)$$ is the correct answer.
  • Question 4
    1 / -0
    $$\dfrac {1}{\sqrt {9} - \sqrt {8}}$$ is equal to
    Solution
    $$\dfrac {1}{\sqrt {9} - \sqrt {8}} = \dfrac {1}{\sqrt {3\times 3} - \sqrt {4\times 2}} = \dfrac {1}{3 - 2\sqrt {2}}$$

    $$= \dfrac {1}{3 - 2\sqrt {2}} \times \dfrac {3 + 2\sqrt {2}}{3 + 2\sqrt {2}} $$

    $$= \dfrac {3 + 2\sqrt {2}}{(3)^{2} - (2\sqrt {2})^{2}}$$

    $$= \dfrac {3 + 2\sqrt {2}}{9 - 8} = \dfrac {3 + 2\sqrt {2}}{1} = 3 + 2\sqrt {2}$$
    Hence, $$(D)$$ is the correct answer.
  • Question 5
    1 / -0
    Choose the correct alternative answer for the question given below.
    Which one of the following is an irrational number?
    Solution
    Since,
    $$\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}$$ is a rational number;
    $$\dfrac{3}{9}$$ is a rational number,
    $$\sqrt{196}=14$$ is a rational number; and
    $$\sqrt{5}$$ is an irrational number.
  • Question 6
    1 / -0
    Which of the following is not an irrational number?
    Solution

  • Question 7
    1 / -0
    Choose the correct alternative answer for the question given below.
    What is $$\sqrt{n}$$, if n is not a perfect square number?
    Solution
    If n is not a perfect square number, then $$\sqrt{n}$$ is an irrational number.
  • Question 8
    1 / -0
    Choose the correct alternative answer for the question given below.
    Which one of the following is an irrational number?
    Solution
    Since,
    $$0.17$$ has a terminating decimal expansion, so, it is rational number;
    $$1.\overline{513}$$ has non-terminating recurring decimal expansion, so ,it is rational number;
    $$0.\overline{2746}$$ has non-terminating recurring decimal expansion, so, it is rational number;
    $$0.101001000....$$ has non-terminating non-recurring decimal expansion, so, it is irrational number;
  • Question 9
    1 / -0
    $$\sqrt{2}$$ is 
    Solution

    $$  {\textbf{Step - 1: Formation}} $$

                     $$  \sqrt 2 {\text{  =  }}\dfrac{{\text{p}}}{{\text{q}}} $$

                     $$  {{\text{Here p and q are coprime numbers and q}} \ne {\text{0}}} $$

                     $$  {\sqrt 2 {\text{  =  }}\dfrac{{\text{p}}}{{\text{q}}}} $$

                     $$  {{\text{On squaring both the sides we get,}}} $$

                     $$  {{\Rightarrow \text{ 2  =  }}{{\left( {\dfrac{{\text{p}}}{{\text{q}}}} \right)}^{\text{2}}}} $$

                     $$  {{\Rightarrow \text{ 2}}{{\text{q}}^{\text{2}}}{\text{ =  }}{{\text{p}}^{\text{2}}}{{ \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots }}..\left( {\text{1}} \right)} $$

                     $$   {\Rightarrow} \dfrac{{{p^2}}}{2} = q $$

    $$  {\textbf{Step - 2: Calculation}} $$

                      $$  {\text{So 2 divides p and p is multiple of 2}} $$

                      $$   \Rightarrow {\text{p = 2m}} $$

                      $$   \Rightarrow {{\text{p}}^2} = 4{m^2} ..........................(2) $$

                      $$  {\text{From equation (1) and (2), we get}} $$

                      $$   \Rightarrow 2{q^2} = 4{m^2} $$

                      $$   \Rightarrow {q^2} = 2{m^2} $$

                      $$  {q^2}\;{\text{is amultiple of 2}} $$

                      $$  {\text{So, q is multiple of 2}} $$

                      $$  {\text{Hence, p, q have a common factor 2. This contradicts our assumption that they are co-primes. }}$$

                      $${\text{Therefore, p/q is not a rational number}} $$

                      $$ \sqrt 2{\text{ is an irrational number.}}$$

    $${\textbf{Hence, the correct answer is option B.}}$$

     

  • Question 10
    1 / -0
    Multiply $$10^4$$ by $$10^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now