Self Studies

Herons Formula Test - 17

Result Self Studies

Herons Formula Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The perimeter of an equilateral triangle is 60 m. The area is

    Solution

    Let each side of an equilateral be x.

    Then, perimeter of an equilateral triangle = 60 m

    x + x + x = 60

    3x = 60

    x = \(\frac{60}{3}\) = 20 m

    Area of an equilateral triangle = \({\sqrt3 \over 4} (side)^2\) = \({\sqrt3 \over 4} \times 20 \times 20\) = \(100 \sqrt3 m^2\)

    Thus, the area of triangle is \(100 \sqrt3 m^2\).

  • Question 2
    1 / -0

    The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is

    Solution

    Since, the three sides of triangle are a = 56 cm, b = 60 cm and c = 52 cm.

    Then the semi-perimeter of triangle,

    \(s = {{ a + b + c} \over 2}\) = \({56 + 60 + 52} \over 2\) = \(\frac{168}{2}\) = 84 cm

    Area of a triangle = \(\sqrt{s(s-a)(s-b)(s-c)}\)

    \(\sqrt{84(84-56)(84-60)(84-52)}\)

    \(\sqrt{84 \times 28 \times 24 \times 32}\)

    \(\sqrt {4 \times 7 \times 3 \times 4 \times 7 \times 4 \times 2 \times 3 \times 4 \times 4 \times 2}\)

    \(\sqrt{(4)^5 \times (7)^2 \times (3)^2 \times (2)^2}\)

    \((4)^2 \times 2 \times 7 \times 3 \times 2\)

    = 1344 \(cm^2\)

    Hence, the area of triangle is 1344 \(cm^2\).

  • Question 3
    1 / -0

    The area of an equilateral triangle with side \(2 \sqrt3\, cm\) is

    Solution

    Given, side of an equilateral triangle is \(2\sqrt3\, cm\) .

    Area of an equilateral triangle = \({\sqrt 3 \over 4} (side)^2\)

    = \({\sqrt 3 \over 4} (2 \sqrt3)^2\)

    \({\sqrt 3 \over 4} \times 4 \times 3\)

    \(3 \sqrt3\)

    = 3 x 1.732

    = 5.196 \(cm^2\)

    Hence, the area of an equilateral triangle is 5.196 \(cm^2\).

  • Question 4
    1 / -0

    The length of each side of an equilateral triangle having an area of \(9\sqrt3\, cm^2\) is

    Solution

    Area of equilateral Δ i.e., \(9 \sqrt3 = {\sqrt3 \over 4} (side)^2\)

    \((side)^2 = {{9 \sqrt3 \times 4} \over \sqrt3}\) = 36

    side = \(\sqrt{36}\) = 6 cm

  • Question 5
    1 / -0

    If the area of an equilateral triangle is \(16 \sqrt3\, cm^2\) , then the perimeter of the triangle is

    Solution

    Given, area of an equilateral triangle = \(16 \sqrt3\, cm^2\)

    Area of an equilateral triangle = \({\sqrt3 \over 4} (side)^2\)

    \({\sqrt3 \over 4} (side)^2\) = \(16 \sqrt3\)

    \((side)^2 = 64\)

    Side = 8 cm [taking positive square root because side is always positive]

    Perimeter of an equilateral triangle = 3 x Side = 3 x 8 = 24 cm

    Hence, the perimeter of an equilateral triangle is 24 cm.

  • Question 6
    1 / -0

    The sides of a triangle are 35 cm, 54 cm and 61 cm, respectively. The length of its longest altitude

    Solution

    Sides of the triangle are 35 cm, 54 cm and 61 cm

    s = \({{35 + 54 + 61} \over 2} = 75 cm\)

    Area of Δ = \(\sqrt {75 (75 - 35) (75 - 54) (75 - 61)}\)

    \(\sqrt{75 \times 40 \times 21 \times 14}\)

    \(\sqrt{5 \times 5 \times 3 \times 2 \times 2 \times 2 \times 5 \times 3 \times 7 \times 7 \times 2}\)

    = 5 x 3 x 2 x 2 x \(7 \sqrt5\)

    \(420 \sqrt5\, cm^2\)

    Now, longest altitude will be the perpendicular on the smallest side of the triangle from the opposite vertex.

    Length of longest altitude = \(2( Area of \triangle) \over 35\)

    \(2 \times 420 \sqrt5 \over 35\)

    \(24 \sqrt5\, cm\)

  • Question 7
    1 / -0

    The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm, is

    Solution

    Here, s = \({4 + 4 + 2} \over 2\) = 5 cm

    Area of Δ = \(\sqrt{5 (5-2)(5-4)(5-4)}\)

    \(\sqrt{5 \times 3 \times 1 \times 1}\)

    \(\sqrt{15}\, cm^2\)

  • Question 8
    1 / -0

    The edges of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per \(cm^2\)  is

    Solution

    Here, 2s = 6 + 8 + 10 = 24

    s = \(\frac{24}{2}\) = 12 cm

    Area of Δs = \(\sqrt{12 (12 -6)(12 - 8)(12-10)}\)

    \(\sqrt {2 \times 6 \times 6 \times 4 \times 2}\)

    = 2 x 6 x 2

    = 24 \(cm^2\)

    Cost of painting at the rate of 9 paise per \(cm^2\) = Rs.0.09

    Cost of painting at the rate of 9 paise for 24 \(cm^2\) = Rs (24 x 0.09) = Rs. 2.16

  • Question 9
    1 / -0

    The perimeter of an isosceles triangle is 32 cm. The ratio of one of the equal sides to its base is 3 : 2. Find the area of the triangle.

    Solution

    Perimeter = 32 cm

    Let one of the equal sides be 3x and other be 2x

    3x + 3x + 2x = 32

    8x = 32

    x = 4

    Sides of isosceles triangles are 12 cm, 12cm, 8 cm

    S = \(\frac{32}{2}\) = 16 cm

    Area = \(\sqrt{16 \times 4 \times 4 \times 8}\)

    \(32 \sqrt2\, cm^2\)

  • Question 10
    1 / -0

    The perimeter of a triangular field is 144 m and the ratio of its sides is 3 : 4 : 5. Find the area of the field.

    Solution

    Let the length of the sides be 3x, 4x, 5x meters.

    144 = 12x

    x = 12

    Sides of the triangular field are 36 m, 48 m, 60 m

    Δ = \(\sqrt {72 (72 - 36) (72 - 48) (72 -60)}\)

    = 864 sq. m

  • Question 11
    1 / -0

    The perimeter of a rhombus is 52 cm and one of its diagonals is 24 cm. Determine the length of the other diagonal.

    Solution

    Given perimeter of a rhombus is 52 cm, each side of the rhombus = \(\frac{52}{4} = 13\, cm\)

    Area of rhombus = \(2 \sqrt{25(25-24)(25-13)(25-13)}\)

    = 120 sq. cm.

    Area = \(\frac{1}{2} \times product\, of\, diagonals\)

    120 = \(\frac{1}{2}\) x 24 x d

    d = 10 cm

    The other diagonal to 10 cm.

  • Question 12
    1 / -0

    The perimeter of an equilateral triangle is 60 m. What is its area?

    Solution

    Perimeter of an equilateral triangle 60 m.

    3a = 60 m

    a = 20m

    Area of an equilateral triangle = \({\sqrt3 \over 4} a^2\) = \(100 \sqrt3\, m^2\)

  • Question 13
    1 / -0

    The area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32 cm is \(k\sqrt3\, cm^2\). Find the value of k.

    Solution

    Here we have perimeter of the triangle = 32 cm

    Let a = 8 cm and b = 11 cm

    Third side, c = 32 − (8 + 11) = 13cm

    S = \(\frac{32}{2}\) = 16 cm

    Therefore, area of the triangle

    \(\sqrt{s(s-a)(s-b)(s-c)}\)

    \(\sqrt{16 \times 8 \times 5 \times 3}\, cm^2\)

    \(80 \sqrt{30}\, cm^2\)

    \(k \sqrt{30}\, cm^2\)

    \(k\sqrt{30} = 8\sqrt{30}\)

    k = 8

  • Question 14
    1 / -0

    The sides of a triangle are 11 cm, 15 cm, and 16 cm. The altitude to the largest side is____.

    Solution

    We have, sides of triangle 11 cm, 15 cm and 16 cm.

    S = \({11 + 15 + 16}\over 2\) = 21

    Area of triangle = \(\sqrt{s(s-a)(s-b)(s-c)}\)

    \(\sqrt{21(21-11)(21-15)(21-16)}\)

    \(30 \sqrt7\, cm^2\)

    Let altitude to the largest side be h cm.

    \(\frac{1}{2} \times 16 \times h = 30 \sqrt7\)

    \(8h = 30\sqrt7\)

    h = \(15 \sqrt7\over 4\) cm

  • Question 15
    1 / -0

    The base of an isosceles triangle measures 24 cm and its area is 192 \(cm^2\). Find its perimeter.

    Solution

    Let the other two equal sides of an isosceles triangle be a cm.

    Then, S = \({{a + a + 24}\over 2} = (a + 12) cm\)

    Area of triangle = \(192\, cm^2\)

    \(\sqrt{s(s-a)(s-b)(s-c)}\) = 192

    \(\sqrt{(a +12)(a+12-a)(a+12-a)(a+12-24)} = 192\)

    \(144(a^2 - 144) = (192)^2\)

    \(a^2 = 400\)

    a = 20 cm

    Perimeter = 20 cm + 20 cm + 24 cm = 64 cm

  • Question 16
    1 / -0

    What in the area of an equilateral triangle with side 2 cm?

    Solution

    Given,

    Area of equilateral triangle = \({\sqrt3 \over 4} a^2\)

    Here side(a) = 2 cm

    \({\sqrt3 \over 4} 2^2\)

    \({\sqrt3 \over 4} \times 2 \times 2\)

    \(\sqrt3\)

    \(\sqrt3\, cm^2\)

    Therefore area of an equilateral triangle whose side is 2 cm is \(\sqrt3\, cm^2\).

  • Question 17
    1 / -0

    A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?

    Solution

    Given; perimeter = 180 cm

    Hence, s = \(\frac{180}{2}\) = 90 cm

    Side = \(\frac{180}{3}\) = 60 cm

    Area = \(\sqrt{s(s-a)(s-b)(s-c)}\)

    \(\sqrt{90 (90-60)^3}\)

    \(\sqrt{90 \times 30^3}\)

    \(\sqrt{30^4 \times 3}\)

    \(30^2 \sqrt3\)

    \(900 \sqrt3\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now