Self Studies

Herons Formula Test - 22

Result Self Studies

Herons Formula Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of a triangle whose sides are 13 cm, 14 cm and 15 cm is:
    Solution

    Area of triangle with sides a, b and c is given by: $$ \sqrt { s(s-a)(s-b)(s-c) }  $$.
    where $$s = \displaystyle \frac { a+b+c }{ 2 } $$ 

    For triangle with sides 13 cm, 14 cm and 15 cm:

    $$ s = \displaystyle \frac { 13+14+15 }{ 2 } \ \text{cm}=21\ \text{  cm} $$
    $$\therefore $$ Area of the triangle with sides 13 cm, 14 cm and 15 cm $$ =\sqrt { 21(21-13)(21-14)(21-15) }$$

    $$ =\sqrt { 21\times 8\times 7\times 6 }$$

    $$ =\sqrt { 7\times 3\times 2\times 4\times 7\times 2 \times 3 } $$

    $$= 7\times 3\times 2 \times 2 = 84\  \text{cm}^{2}$$

  • Question 2
    1 / -0
    Find the area of the triangle having three sides given as $$5 cm, 6 cm$$ and $$7 cm$$.
    Solution
    Let, 
    $$ a=7cm,\quad b=5cm,\quad c=6cm$$ 
    Now by applying Heron's formula :
    $$s=\cfrac { 7+5+6 }{ 2 } $$
       $$=9cm$$

    $$\therefore area\,of\, \Delta =\sqrt { 9(9-7)(9-5)(9-6) }$$ 

                            $$=\sqrt { 9\times 2\times 4\times 3 }$$

    $$area \,of\,\Delta =2\times 3\sqrt { 6 } $$
                        $$=6\sqrt { 6 } c{ m }^{ 2 }$$
    Hence option A is correct.
  • Question 3
    1 / -0
    The area of a triangle is $$\displaystyle 216cm^{2}$$ and its sides are in the ratio 3 : 4 : 5 The perimeter of the triangle is
    Solution
    Let the sides of the triangle be $$3x cm, 4x cm$$ and 5x cm Then 
    $$\displaystyle s=\frac{3x+4x+5x}{2}=\frac{12x}{2}=6x$$
    $$\displaystyle \therefore$$  Area of  $$\displaystyle \Delta=\sqrt{s\left ( s-a \right )\left ( s-b \right )\left ( s-c \right )}$$
    $$\displaystyle = \sqrt{6x\left ( 6x - 3 \right )\left ( 6x - 4x \right )\left ( 6x - 5x \right )}$$
    $$\displaystyle= \sqrt{6x\times 3x\times 2x\times x=6x^{2}}$$
    Given $$\displaystyle 6x^{2}=216\Rightarrow x^{2}=\frac{216}{6}=36\Rightarrow x=6$$
    $$\displaystyle \therefore $$ The sides of the triangle are $$(3\times 6)cm, (4\times 6)\ cm$$ and $$(5\times 6)\ cm$$ i.e $$18\ cm, 24\ cm$$ and $$30\ cm$$
    Perimeter of the $$\displaystyle \Delta  $$ =$$ 18 cm + 24 cm +30 cm$$
    = 72 cm
  • Question 4
    1 / -0
    The perimeter of a triangle field is $$144 m$$ and ratio of the sides is $$3 : 4 : 5$$. Then the area of the field is
    Solution

    Let the sides of the triangle be $$ 3a, 4a, 5a $$.
    Perimeter of the triangle  $$ = 3a + 4a + 5a $$

                                             $$= 12a$$
    Given, perimeter of the triangle $$ = 144  m $$

    $$ \Rightarrow 12a = 144  m $$

    $$ a = 12   m $$
    So, the sides of the triangle are

     $$ 3a = 36  m,\\ 4a = 48  m, \\5a  = 60  m $$.

    Area of triangle with sides $$a,b$$ and $$c$$ is given as  is $$ \sqrt { s(s-a)(s-b)(s-c) } $$. 

    Where

    $$ s= \dfrac { a+b+c }{ 2 } $$

    For triangle with sides $$36  m, 48  m \ and\  60  m,$$

     $$ s = \dfrac { 36+48+60 }{ 2 } \\= 72  m  $$
    Thus 

    $$A =\sqrt { 72(72-36)(72-48)(72-60) } \\=\sqrt { 72\times 36\times 24\times 12 }$$

    $$ =\sqrt { 36\times 2\times 36\times 12\times 2\times 12 } $$

    $$= 36\times 12\times 2 \\= 864 {m}^{2}$$

  • Question 5
    1 / -0
    State Heron's formula for area of a triangle.
    Solution
    The Heron's formula for the area of a triangle is $$\sqrt{s(s-a)(s-b)(s-c)}$$
    where, $$a,\ b,\ c$$ are the three sides and $$s$$ is the semi-perimeter of the triangle.
    $$\therefore \ s=\dfrac{a+b+c}{2}$$
  • Question 6
    1 / -0
    The sides of a triangular board are $$13\ metres$$, $$14\ metres$$ and $$15\ metres$$. The cost of painting it at the rate of $$Rs. 8.75$$ per $$m^2$$ is
    Solution
    Area of triangle with sides $$a, b,$$ and $$c$$ and $$s = \dfrac { a+b+c }{ 2 } $$ is $$ \sqrt { s(s-a)(s-b)(s-c) } $$.

    For triangle with sides 13  m, 14  m and 15  m, $$ s = \dfrac { 13+14+15 }{ 2 } = 21\  m  $$


    Area of the triangle with $$13\  m$$, $$14\  m$$ and $$15\  m$$ $$ =\sqrt { 21(21-13)(21-14)(21-15) } $$

    $$=\sqrt { 21\times 8\times 7\times 6 }$$

    $$ =\sqrt { 3\times 7\times 2\times 4\times 7\times 3 \times 2}$$

    $$ = 3\times 7\times 2 \times 2 = 88\  {m}^{2}$$

    $$\therefore $$ cost of painting it at the rate of Rs $$ 8.75 $$ per $$ { m }^{ 2 } = 84 \times 8.75 = $$ Rs. 735 

  • Question 7
    1 / -0
    If each side of a triangle is doubled, than find the ratio of area of the new triangle than formed and the given triangle.
    Solution
    Let $$a, b$$ and $$c$$ denotes the length of the sides of the triangle. 
    Area of the triangle, $${ A }_{ 1 }$$ $$=$$ $$\sqrt{s(s-a)(s-b)(s-c)}$$, where s is the semi-perimeter of the triangle.
    So, semiperimeter $$\displaystyle s = \frac{a+b+c}{2}$$
    When the sides of the triangle are doubled, we get
    $${ s }^{ \prime  }=\dfrac { 2a+2b+2c }{ 2 } =a+b+c=2s$$, where $${ s }^{ \prime  }$$ is the semi-perimeter of the new triangle
    Now, Area of the new triangle, $${ A }_{ 2 }=\sqrt { { s }^{ \prime  }({ s }^{ \prime  }-2a)({ s }^{ \prime  }-2b)({ s }^{ \prime  }-2c) } $$
    $$ =\sqrt { 2s(2s-2a)(2s-2b)(2s-2c) } $$
    $$=\sqrt { 16s(s-a)(s-b)(s-c) } $$
    $$ =4\sqrt { s(s-a)(s-b)(s-c) } =4{ A }_{ 1 }$$
    So, ratio of the are of new triangle to the given triangle $$=\dfrac { { A }_{ 2 } }{ { A }_{ 1 } } =\dfrac { 4{ A }_{ 1 } }{ { A }_{ 1 } } =4:1$$
  • Question 8
    1 / -0
    For a quadrilateral, with the $$4$$ sides given and with none of the angles $$90^o,$$ 
    Solution
    For a quadrilateral with $$4$$ sides given and none of the angle is $$90°$$, then area of quadrilateral area can  found by using Heron's formula only and sum of all the angles is $$360°$$
  • Question 9
    1 / -0
    If A is the area of a triangle in $$\displaystyle cm^{2}$$, whose sides are 9 cm, 10 cm and 11 cm,then which one of the following is correct?
    Solution
    $$A=\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,s=\cfrac { a+b+c }{ 2 } =\cfrac { 9+10+11 }{ 2 } =15㎝$$
    $$\therefore A=\sqrt { 15\left( 15-9 \right) \left( 15-10 \right) \left( 15-11 \right)  } =\sqrt { 15\times 6\times 5\times 4 } =\sqrt { 300\times 6 } $$
    $$=\sqrt { 100\times 9\times 2 } =30\sqrt { 2 } =30\times 1.41=42.30cm^2$$
    $$\therefore 40cm^2<A<45cm^2$$ is correct answer
  • Question 10
    1 / -0
    The sides of a triangle are 16 cm, 30 cm and 34 cm. Its area is
    Solution
    Since $$16^2 + 30^2 = 34^2$$, clearly, given triangle is a right angled triangle. Hence
    Area $$=\, \displaystyle \frac {1}{2}\, \times\, base\, \times\, height$$
    $$=\, \displaystyle \frac {1}{2}\, \times\, 16\, \times\, 30\, =\, 240\, cm^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now