Self Studies

Herons Formula Test - 23

Result Self Studies

Herons Formula Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The adjacent sides of a parallelogram are 8 cm and 9 cm. The shorter diagonal is 13 cm. What is its area?
    Solution
    As shown in the diagram, area of triangle ABC = 1/2 area of the parallelogram ABCD. By Heron's formula, area of triangle
    $$=\, \sqrt {S(S - a)(S - b)(S - c)}$$
    Here S = $$\displaystyle \frac {9 + 8 + 13}{2}\, =\, 15$$
    $$\sqrt{180\, \times\, 7}\, =\, \sqrt{1260}\, =\, \sqrt{6\, \times\, 210}$$
    $$\sqrt {6\, \times\, 7\, \times\, 30}\, =\, 6\sqrt{35}$$ sq cm.
    Hence, area of ABCD
    $$=\, 2\, \times\,6\sqrt{35}\, =\, 12\, \sqrt{35}$$ sq cm
  • Question 2
    1 / -0
    The sides of a triangle are $$5 cm$$, $$12 cm$$ and $$13 cm$$, Then its area is
    Solution
    Let $$a=5$$ cm, $$b=12$$ cm, $$c=13$$ cm

    Semiperimeter $$s=\dfrac{5+12+13}{2}\Rightarrow 15$$
    Area of $$\triangle=\sqrt{s(s-a)(s-b)(s-c)}$$
    Area of $$\triangle=\sqrt{15(15-5)(15-12)(15-13)}$$
    Area of $$\triangle=\sqrt{15\times 10\times 3\times 2}$$
    Area of $$\triangle=\sqrt{900}$$
    Area of $$\triangle=30\ cm^2\Rightarrow \dfrac{30}{100\times 100}\Rightarrow 0.003\ m^2.$$
  • Question 3
    1 / -0
    The area of a triangle, whose sides are $$4 cm$$, $$13 cm$$ and $$15cm$$, is
    Solution
    Let $$a=4$$ cm, $$b=13$$ cm, $$c=15$$ cm

    Semiperimeter $$s=\dfrac{4+15+13}{2}\Rightarrow 16$$
    Area of $$\triangle=\sqrt{s(s-a)(s-b)(s-c)}$$
    Area of $$\triangle=\sqrt{16(16-4)(16-13)(16-15)}$$
    Area of $$\triangle=\sqrt{16\times 12\times 3\times 1}$$
    Area of $$\triangle=\sqrt{576}$$
    Area of $$\triangle=24\ cm^2.$$
  • Question 4
    1 / -0
    ABCD is a given field whose sides are indicated. If $$\angle$$DAB = 90$$^o$$, then area of the field is ............

    Solution
    IN $$\bigtriangleup DBC$$ $$\angle DAB=90^{0}$$
    Then $$DB^{2}=(40)^{2}+(9)^{2}=1600+81=1681$$
    OR DB=41 m
    Area of $$\bigtriangleup DBC=\sqrt{42(42-41)(42-28)(42-15)}=\sqrt{15876}=126$$ $$m^{2}$$
    Area of$$\bigtriangleup ADB=\frac{1}{2}(40\times 9)=\frac{360}{2}=180$$$$m^{2}$$
    Area of ABCD=$$\bigtriangleup DBC+\bigtriangleup ADB$$
    Area of ABCD=$$126+180=306m^{2}$$
  • Question 5
    1 / -0
    The base of an isosceles triangle is $$16$$ cm and its perimeter is $$36$$ cm. The area of the triangle is ........
    Solution
    In isosceles $$\triangle ABC$$, 
    perimeter  $$=AB+BC+CA =36$$ 
     Let $$AB = AC =x$$
    $$x+x+16 =36$$ 
    $$x= \displaystyle \dfrac{1}{2}\left ( 36-16 \right )cm=10cm$$
    In an isosceles triangle, median is the perpendicular bisector.
    $$\angle AEB =90^o$$
    Now, $$\triangle ABE $$  is a right angle triangle.
    Then by pythagoras theorem, we have
    $$AE^2+BE^2= AB^2$$
    $$\displaystyle   h^{2}+8^{2}=10^{2} $$
    $$h^2=100-64$$
    $$\Rightarrow h=6cm$$
    $$\displaystyle  ar [\Delta ABC]=\dfrac{1}{2}\times \text{base}\times \text{height }\\=\dfrac{1}{2}\times 16cm \times 6cm\\=48\ cm^{2}$$

  • Question 6
    1 / -0
    The sides of a triangle are $$3$$ cm, $$5$$ cm and $$4$$ cm: Its area is
    Solution
    Given: the sides of a triangle are $$3$$ cm, $$5$$ cm and $$4$$ cm.
    To find out: Area of triangle
    Solution:-
    The lengths of the sides are $$a=3$$ cm, $$b=5$$ cm, $$c=4$$ cm.
    $$\therefore  s=\dfrac { a+b+2 }{ 2 } =\dfrac { 3+5+4 }{ 2 } cm=6$$ cm
    We use the formula,
    $$\Delta =\sqrt { { s\left( s-a \right)  }{ \left( s-b \right)  }{ \left( s-c \right)  } } $$.
    $$\therefore  \Delta =\sqrt { 6{ \left( 6-3 \right)  }{ \left( 6-5 \right)  }{ \left( 6-4 \right)  } } { cm }^{ 2 }\\ =\sqrt { 6\times 3\times 1\times 2 }$$ sq.cm
    $$ =6$$ sq.cm
  • Question 7
    1 / -0
    The area of triangle with sides $$35$$ cm, $$66$$ cm and $$53$$ cm is
    Solution
    Hen the sides of a triangle are given then the area is given by Heron's formula.
    Area $$=\sqrt{s(s-a)(s-b)(s-c)}$$  where semiperimeter$$(s)=\dfrac{a+b+c}{2}$$
    $$\because  s=\dfrac{35+66+53}{2}=77 $$
    $$\implies$$ Area of $$\displaystyle \Delta =\sqrt{77\times \left ( 77-35 \right )\times \left ( 77-66 \right )\times \left ( 77-53 \right )}$$
                   $$=\displaystyle \sqrt{77\times 11\times 42\times 24}$$
                   $$ = 924 \text{ cm}^{2}$$
  • Question 8
    1 / -0
    Find the area of a rhombus with sides 20 cm and length of one of the diagonal as 28 cm.
    Solution
    Let $$ABCD$$ is a rhombus with diagonals $$AC$$ and $$BD$$ which intersect each other at $$O$$.

    $$AC = 28 ⇒ AO = 14$$ 

    Let $$BO = x$$ and $$AB = 20\ cm$$ (given) 

    By Pythagorean theorem,

    $$c ^2 = a ^2 + b ^2$$ 
    $$20 ^2 = 14 ^2 + x ^2$$ 
    $$400 = 196 + x ^2$$ 
    $$x ^2 = 400-196$$ 
    $$x ^2 = 204$$
    $$x=2\sqrt { 51 }$$ cm

    Therefore, $$BO=2\sqrt { 51 }\ cm$$
     
    Diagonal $$BD=2\times 2\sqrt { 51 } =4\sqrt { 51 }\ cm$$

    Area = $$\dfrac { 1 }{ 2 }$$ [ product of diagonals]
    $$=\dfrac { 1 }{ 2 } \times 28\times 4\sqrt { 51 } =56\sqrt { 51 }$$
     
    Hence, the area of rhombus is $$56\sqrt { 51 }\ cm^2$$.
  • Question 9
    1 / -0
    The area of triangle whose sides are 4cm, 13 cm and 15 cm is
    Solution
    $$\dfrac { s }{ 2 } =\dfrac { 4+13+15 }{ 2 } =16cm\\\\ Area\ =\sqrt { s(s-a)(s-b)(s-c) } \\\\ =\sqrt { 16(16-4)(16-13)(16-15) } \\\\ =\sqrt { 16\times 12\times 3\times 1 } ={ 24\ cm }^{ 2 }$$'
  • Question 10
    1 / -0
    What is the area of a triangle whose sides are $$3\ \mathrm{cm}$$ , $$5\,\mathrm{ cm}$$ and $$4\,\mathrm{ cm}$$?
    Solution
    Given $$a=3\,\mathrm{cm},b=5\,\mathrm{cm},c=4\,\mathrm{cm}$$
    Now $$s=\dfrac{a+b+c}{2}$$

    Hence $$s=\dfrac{3+5+4}{2}=6$$

    Now using Heron's Formula 

    $$\Delta=\sqrt{s(s-a)(s-b)(s-c)}$$

    $$\Delta=\sqrt{6(6-3)(6-5)(6-4)}$$

    $$\Delta=6\,\mathrm{cm^2}$$

    $$\therefore$$ Area of the triangle $$= 6 \mathrm {cm^2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now