Self Studies

Herons Formula Test - 28

Result Self Studies

Herons Formula Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of triangle of sides $$6cm ,8cm ,10cm$$ 
    Solution
    The sides are $$6cm,8cm,10cm$$
    $$s=\dfrac {6+8+10}2=\dfrac {24}2=12$$
    The area is given as $$\sqrt {s(s-a)(s-b)(s-c)}\\\sqrt {12(6)(4)(2)}\\\sqrt {576}=24cm^2$$
  • Question 2
    1 / -0
    Find the area of a triangle whose sides are respectively $$150\ cm$$, $$120\ cm$$, and $$200\ cm.$$
    Solution
    Let $$a=150\ cm,\ b=120\ cm$$ and $$c=200\ cm.$$
    $$s=\dfrac{a+b+c}{2}$$
    $$\Rightarrow s=\dfrac{150+120+200}{2}$$
    $$\Rightarrow s=235\ cm$$

    Now, by using the heron's formula,
    Area $$=\sqrt{s(s-a)(s-b)(s-c)}$$

             $$=\sqrt{235(235-150)(235-120)(235-200)}$$

             $$=\sqrt{235(85)(115)(35)}$$

             $$=\sqrt{80399375}$$

             $$=8966.57\text{ sq. cm}$$
  • Question 3
    1 / -0
    If every side of a triangle is doubled, the area of the new triangle is $$K$$ times the area of the old one. Find the value of $$K$$.
    Solution
    Let, the sides of the original triangle be $$a,b$$ and $$c$$
    so, the semi-perimeter, $$s=\dfrac{a+b+c}{2}$$
    Original area $$=\sqrt{s(s-a)(s-b)(s-c)}$$

    Now every side is doubled
    So, the new sides are $$2a, 2b$$ and $$ 2c$$
    new semi-perimeter, $$s'=\dfrac{2a+2b+2c}{2}=2\left(\dfrac{a+b+c}{2}\right)=2s$$

    New area $$=\sqrt{s'(s'-2a)(s'-2b)(s'-2c)}$$
                     $$=\sqrt{(2s)(2s-2a)(2s-2b)(2s-2c)}$$
                     $$=\sqrt{2.2.2.2s(s-a)(s-b)(s-c)}$$
                     $$=4\sqrt{s(s-a)(s-b)(s-c)}$$
                     $$=4\times Original\ Area$$

    Hence, the value of $$K$$ is $$4$$.
  • Question 4
    1 / -0
    If the edges of a triangular board are $$15$$ cm, $$36$$cm and $$39$$cm, then the cost of painting its one of the faces at the rate of  $$5$$ paise per cm$$^2$$ is 
    Solution
    Semi-perimeter, $$s=\dfrac{15+36+39}{2}$$
    $$=45$$
    From Heron's formula
    $$\Delta =\sqrt{s(s-a)(s-b)(s-c)}$$
    $$=\sqrt{45\times 30\times 9\times 6}$$
    $$=9\times 5\times 6=30\times 9=270$$cm

    given that cost is 5 paisa per $$cm^2$$
    so, for 270 $$cm^2$$ cost in rs will be:
    Cost$$=\dfrac{270\times 5}{100}$$Rs. $$=\dfrac{1350}{100}$$
    $$\Rightarrow (B)$$.
  • Question 5
    1 / -0
    In the given figure, the area of the $$\triangle {ABC}$$ is

    Solution
    We know that the area of the triangle using heron's formula is given by
    Area $$= \sqrt{s(s-a)(s-b)(s-c)} $$

    So,
    $$ S = \dfrac{8+4+11}{2} = \dfrac{23}{2} = 11.5 $$

    Area $$ = \sqrt{11.5(11.5-11)(11.5-8)(11.5-4)}$$
    $$ =\sqrt{11.5\times 0.5\times 3.5\times 7.5}$$
    $$ = 12.28\text{ cm}^{2}$$
  • Question 6
    1 / -0
    If the sides of a triangle are $$\dfrac{y}{z} + \dfrac{z}{x},\dfrac{z}{x} + \dfrac{x}{y}$$ and $$\dfrac{x}{y} + \dfrac{y}{z}$$ then its area is 
  • Question 7
    1 / -0
    Three sides of a triangular field are 20m, 21m, and 29m long, respectively. The area of the field is :
    Solution
    Given: Sides of the triangular field; $$a=20m, b=21m, c=39m$$ 
    Now, Semiperimeter $$S = \dfrac{a+b+c}{2} = \dfrac{20+21+29}{2} = 35m$$
    $$Area  = \sqrt{s\times (s-a)\times (s-b)\times (s-c)}$$
              $$= \sqrt{35\times (35-20)\times (35-21)\times (35-29)}$$  
              $$= \sqrt{35\times 15\times 14\times 6}$$
              $$=210 sq.m$$ 
  • Question 8
    1 / -0
    The area of a triangle whose sides are 15 m, 16 m and 17 m is :
    Solution
    The sides of the triangle are $$a = 15 \text{ m }, b = 16 \text{ m }, c = 17 \text{ m }$$

    Area of the triangle is given by
    $$S = \cfrac {a + b + c}{2} $$
    $$= \cfrac {15 + 16 + 17}{2} $$
    $$= \cfrac {48}{2} $$
    $$= 24 \text{ m}$$

    Area $$ = \sqrt {S(S - a)(S - b)(S - c)}$$

    $$= \sqrt {24 (25 - 15) (24 - 16) (24 - 17)}$$

    $$= \sqrt {24\times 9\times 8\times 7}$$

    $$= \sqrt {\underline {8}\times \underline {3\times 3}\times 3\times \underline {8}\times 7} $$

    $$= 24\sqrt {21} \text{ sq. m.}$$
  • Question 9
    1 / -0
    The sides of a triangle are $$7$$ cm, $$9$$ cm and $$
    14$$ cm. Its area is 
    Solution
    Area of triangle = $$\sqrt{S(S-a)(S-b)(S-c)}$$
    $$S=\dfrac{a+b+c}{2}$$

    Given $$a= 7$$ cm
    $$b= 9$$ cm
    $$c= 14$$ cm

    $$S= \dfrac{7+9+14}{2}$$
    $$=\dfrac{30}{2}$$

    $$S= 15 cm$$

    $$\therefore $$ Area of triangle = $$\sqrt{S(S-a)(S-b)(S-c)}$$

    $$=\sqrt{15(15-7)(15-9)(15-14)}\\$$
    $$=\sqrt{15.8.6.1}\\$$
    $$=\sqrt{720}\\$$
    $$=\sqrt{5\times 144}\\$$
    $$=\sqrt{12\times 12\times 5}\\$$
    $$=12\sqrt{5}cm^{2}\\$$
    $$\therefore $$ Area of triangle = $$12.\sqrt{5}\ cm^{2}$$

    So, the answer is A. $$12.\sqrt{5}\ cm^{2}$$
  • Question 10
    1 / -0
    The sides of a triangle are in the ratio $$3:5:7.$$ If the perimeter of the triangle is $$60$$ cm, then its area 
    Solution
    Given sides in the ratio $$3:5:7$$

    perimeter of the triangle $$=60cm$$

    $$3x+5x+7x=60$$

    $$\Rightarrow 15x=60$$

    $$\Rightarrow x=60/15$$

    $$\Rightarrow x=4$$

    $$3x=3\times 4=12$$cm

    $$5x=5\times 4=20$$cm

    $$7x=7\times 4=28$$cm

    Let $$S$$ be the semiperimeter of given triangle.

    $$S=\dfrac{1}{2}(a+b+c)$$

    $$=\dfrac{1}{2}\cdot 60$$

    $$=30$$

    Now use formula foe area of triangle

    Area $$=\sqrt{30(30-12)(30-20)(30-28)}$$

    $$=\sqrt{30\cdot18\cdot10\cdot2}$$

    $$=\sqrt{60\cdot180}$$

    $$=\sqrt{10800}$$

    $$=\sqrt{3600\cdot3}$$

    $$=60\sqrt{3}cm^2$$

    $$\therefore$$ Area of triangle $$=60\sqrt{3}cm^2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now