Self Studies

Herons Formula Test - 31

Result Self Studies

Herons Formula Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of a quadrilateral whose sides are $$12, 5, 6$$ and $$15$$. The angle between the first two sides is $$90$$. (Use Heron's formula)
    Solution

    Consider $$ABCD$$  is a quadrilateral where,
    $$AB = 12, BC = 5, CD = 6, DA = 15$$ and $$\angle ABC = 90^o$$

    Area of $$ABCD = $$ Area of $$\Delta ABC + $$Area of $$\Delta ACD$$
    In $$\Delta$$ ABC, $$\angle B = 90^o$$
    Apply Pythagoras theorem in $$\Delta ABC$$
    Therefore, $$AC^{2} = AB^{2}+BC^{2}= 12^{2}+5^{2}$$
    So, $$AC = 13$$

    Area of $$\Delta ABC = \dfrac{1}{2}\times AB \times BC = \dfrac{1}{2}\times12\times 5 = 30 m^{2}$$

    In $$\Delta ACD$$, let $$s$$ be the semiperimeter,
     $$S = \dfrac{6 + 15 + 13}{2} = 17$$m
    Applying Heron's formula,

    Area of $$\Delta ACD$$ = $$\sqrt{S(S-a)(S-b)(S-c)}$$ = $$\sqrt{17(17-13)(17-15)(17-6)}$$

                              = $$\sqrt{17(4)(2)(11)} = 2\sqrt{374}$$

    Hence, Area of quadrilateral $$ABCD = 30 + 2\sqrt{374}$$

    So, option C is correct.

  • Question 2
    1 / -0
    The perimeter of a triangle is $$540$$ m and its sides are in the ratio $$12 : 25 : 17.$$ Find the area of the triangle.

    Solution

    $$\textbf{Step 1 : Find the sides of triagnle}$$

                     $$\text{Let the sides of the triangle be 12a, 25a, 17a }$$
                     $$\text{We know that perimeter of the triangle  = Sum of all sides}$$ 

                     $$\Rightarrow\text{ 12a + 25a + 17a = 54a}$$

                     $$\text{Given, perimeter of the triangle = 540 m }$$
                     $$\Rightarrow\text{54a = 540 m}$$
                    $$\text{ a = 10  m}$$
                    $$\text{So, the lengths of the sides of triangle are }$$

                    $$\text{12a = 120 m}$$ 

                    $$\text{25a = 250 m}$$

                    $$\text{17a  = 170 m}$$

    $$\textbf{Step 2 : Find the area of triangle using Heron's formula}$$

                    $$\text{We can use Heron's formula to get the area of triangle}$$

                    $$\text{Area of triangle with sides with sides a, b, c and semi perimeter s}$$ 

                    $$\text{are } \sqrt { s(s-a)(s-b)(s-c)}  \text{ respectively}$$. 

                  $$\text{and s =}$$  $$\dfrac{a+b+c}{2}$$

                  $$\text{For triangle with sides 120  m, 250  m and 170  m, }$$

                  $$\text{s =}$$ $$\dfrac { 120 + 250 + 170 }{ 2 }$$

                  $$\text{s = 270 m}$$
                  
    $$\text{Substituting the sides 120 m, 250 m and 170 m in the Heron's formula, we get}$$

                  $$\Rightarrow A= \sqrt { 270(270-120)(270-250)(270-170) } $$

                           $$=\sqrt { 270\times 150\times 20\times 100 } $$

                           $$=\sqrt { 9\times30\times30\times5\times20\times20\times5} $$

                           $$= 3\times 30\times 5 \times 20$$

                           $$= 9000{m}^{2}$$

     $$\textbf{Hence , area of triangle is 9000}$$ $$m^2$$

  • Question 3
    1 / -0
    The triangular side - wall of a flyover have been used for advertisements, The sides of the walls are 122 m, 22m and 120 m. The advertisements requires rent of Rs 5000 per $$\displaystyle m^{2}$$ per year. A company hired one of its walls for 3 months. How much rent did it pay ?
    Solution
    Sides of a triangular wall is $$122m, 22m, 120m.$$
    Hence, area of triangle=$$\sqrt{s(s-122)(s-22)(s-120)}$$ and 

    $$s=\dfrac{122+22+120}{2}$$.
    $$\therefore s=132$$

    $$\therefore$$Area of triangular wall$$=1320m^2$$
    Since, The advertisements yeild an earning of Rs 5000 per $$\displaystyle m^{2}$$ per year.

    Hence, Earning per 3 months$$= \dfrac{5000}{4}$$$$=1250$$  per $$m^2$$
    $$\therefore$$Rent paid$$=1250(1320)=1650000Rs.$$

  • Question 4
    1 / -0
    Using Heron's formula find the area of a quadrilateral whose sides are $$3\ cm, 4\ cm, 4\ cm$$, and $$5\ cm$$. The angle between the first two sides is $$90^0$$.
    Solution
    In $$\Box ABCD$$, 
    $$AB = 3\ cm, BC = 4\ cm, CD = 4\ cm, DA = 5\ cm$$ and $$\angle ABC = 90^o$$

    Area of $$ABCD$$ = Area of $$\Delta ABC$$ + Area of $$\Delta ACD$$

    In $$\Delta ABC, \angle B = 90^o$$
    Therefore, $$AC^{2} = AB^{2}+BC^{2}= 3^{2}+4^{2}$$
    So, $$AC = 5$$

    Area of $$\Delta ABC = \dfrac{1}{2}\times AB \times AC = \dfrac{1}{2}\times3\times 4 = 6 cm^{2}$$

    In $$\Delta ACD, s = \dfrac{4 + 5 + 5}{2} = 7$$m

    Applying Heron's formula,
    Area of $$\Delta ACD = \sqrt{S(S-a)(S-b)(S-c)}$$ = $$\sqrt{7(7-3)(7-4)(7-4)}$$
                                = $$\sqrt{7(4)(3)(3)} = 6\sqrt{7}$$ 

    Hence, Area of $$\Box ABCD = (6 + 6\sqrt{7})cm^{2}$$

    So, option D is correct.
  • Question 5
    1 / -0

    A traffic signal board, indicating 'SCHOOLAHEAD', is an equilateral triangle with side $$a$$. Find the area of the signal board, using Heron's formula. If its perimeter is $$180 cm$$, what will be the area of the signal board?

    Solution
    Area of triangle $$=\sqrt { S(S-a)(S-b)(S-c) } $$ 

    Perimeter $$=180 cm $$ 

    Semi-perimeter, $$S=\cfrac { a+b+c }{ 2 } =\cfrac { 180 }{ 2 } =90\ cm\quad $$ 

    Given triangle is an equilateral triangle, therefore $$a=b=c$$

    Perimeter $$=3a$$ 

    $$180=3a\Rightarrow a=60$$
    $$a=b=c=60\ cm$$

    Area of triangle 
    $$=\sqrt { S(S-a)(S-b)(S-c) } $$

    $$ =\sqrt { 90(90-60)(90-60)(90-60) } $$

    $$ =\sqrt { 90\times 30\times 30\times 30 } $$

    $$ =\sqrt { 9\times 3\times 3\times 3\times { (10) }^{ 4 } } $$

    $$ =3\times 3\times 10^{ 2 }\sqrt { 3 } $$

    $$ =900\sqrt { 3 } cm^2$$ 
  • Question 6
    1 / -0
    Find the area of a quadrilateral whose sides are $$3\ cm, 4\ cm, 2\ cm$$, and $$5\ cm$$. The angle between the first two sides is $$90^o$$. (Use Heron's formula)
    Solution
    In quadrilateral $$ABCD$$, 
    $$AB = 3\ cm, BC = 4\ cm, CD = 2\ cm, DA = 5\ cm$$ and $$\angle ABC = 90^0 $$

    Area of $$ABCD$$ = Area of $$\Delta ABC +$$ Area of $$\Delta ACD$$

    In $$\Delta ABC, \angle B = 90^0$$

    $$\therefore$$  Area of $$\Delta ABC$$ = $$\dfrac{1}{2}\times AB \times BC = \dfrac{1}{2}\times3\times 4\ cm^2 = 6 cm^{2}$$

    In $$\Delta ABC$$, applying pythagorous theorem we get,
    $$AC^2=AB^2+BC^2$$
    $$\Rightarrow AC^2=3^2+4^2$$
    $$\Rightarrow AC^2=9+16$$
    $$\Rightarrow AC^2=25$$
    $$\Rightarrow AC=5$$
    $$\therefore  AC=5\ cm$$

    In $$\Delta ACD$$, semi-perimeter $$s = \dfrac{2 + 5 + 5}{2}cm = 6$$ $$cm$$

    Applying Heron's formula,
    Area of $$\Delta\ ACD$$ = $$\sqrt{S(S-a)(S-b)(S-c)}$$ = $$\sqrt{6(6-5)(6-5)(6-2)}$$
                              = $$\sqrt{6(1)(1)(4)} = \sqrt{24}$$

    Hence, Area of $$\Box ABCD =( 6 + \sqrt{24}) cm^2$$

    So, option $$C$$ is correct.

  • Question 7
    1 / -0
    Use Heron's formula to find the area of a triangle of lengths $$5, 7$$ and $$8$$.
  • Question 8
    1 / -0
    Find the area of a field which is in shape of a parallelogram with sides 12 cm and 14 cm and one of the diagonal of length 18 cm.   
    Solution
    Solution:
    To find: 
    $$ar(llgm ABCD)=?$$
    Solution;
    $$ar(\triangle ABD)=\sqrt{s(s-a)(s-b)(s-c)}$$
    here, $$a=12, b=14 , c=18 $$
     $$s=\cfrac{12+14+18}2=22$$
    $$ar(\triangle ABD)=\sqrt{22(22-12)(22-14)(22-18)} cm^2$$

    $$=\sqrt{22\times10\times8\times4}\quad cm^2$$

    $$=\sqrt{7040}\quad cm^2$$

    $$=8\sqrt{110}\quad cm^2$$

    Now, 
    $$ar(llgm ABCD)=2\times ar(\triangle ABD)$$

    $$=2\times 8\sqrt{110}$$

    $$=16\sqrt{110}\quad cm^2$$

    Hence, A is the correct answer.

  • Question 9
    1 / -0
    Two sides of a plot measure 32 m and 24 m and the angle between them is a perfect right angle The other two sides measure 25 m each and the other three angles are not right angles What is the area of the plot?

    Solution

    $$arABCD=ar\triangle ADC+ar\triangle ABC$$
    $$ar\triangle ADC=\dfrac { 1 }{ 2 } \times 24\times 32=384{ m }^{ 2 }$$
    Now, $$AC=\sqrt { { AD }^{ 2 }+{ DC }^{ 2 } } $$
                     $$=\sqrt { { 24 }^{ 2 }+{ 32 }^{ 2 } } =\sqrt { 1600 } =40m$$
    $$\therefore \quad ar\triangle ABC=\sqrt { s\left( s-a \right) \left( s-b \right) \left( s-c \right)  } ,\quad S=\dfrac { 40+25+25 }{ 2 } =45m$$
    $$=\sqrt { 45\left( 45-40 \right) \left( 45-25 \right) \left( 45-25 \right)  } $$
    $$=\sqrt { 45\times 5\times 20\times 20 } =15\times 20=300{ m }^{ 2 }$$
    $$\therefore \quad ar.ABCD=384+300=684{ m }^{ 2 }$$

  • Question 10
    1 / -0
    In an equilateral triangle, $$3$$ coins of radii $$1$$ unit each are kept so that they touch each other and also the sides of the triangle. Area of the triangle is?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now