Self Studies

Surface Areas and Volumes Test - 31

Result Self Studies

Surface Areas and Volumes Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A spherical ball made of iron has diameter 6 cm. If density of iron 8g/$$\displaystyle cm^{3} $$ then mass of the ball is nearly (use $$\displaystyle \pi =3.142 $$)
    Solution
    Volume of ball
    V = $$\displaystyle \dfrac{4}{3}\times 3.14\times 3\times 3\times 3cm^{3}=113.04m^{3}$$
    Mass of ball = vol x density
                        = 113.04 x 8 g = 904.32 g = 0.9 kg
  • Question 2
    1 / -0
    Total surface area of a cube of 2 centimetre side is 
    Solution
    Total surface area of the cube=$$6a^2$$
    Here a=2 cm
    $$\Rightarrow 6\times (2^2)=24 cm^2$$
  • Question 3
    1 / -0
    A right circular cylinder and a sphere are of equal volumes and their radii are also equal If h is the height of the cylinder and d is the diameter of the sphere then
    Solution
    Volume of cylinder = Volume of sphere
    $$\displaystyle \Rightarrow \pi \left ( \dfrac{d}{2} \right )^{2}h=\dfrac{4}{3}\pi \left ( \dfrac{d}{2} \right )^{3}$$
    $$\displaystyle \Rightarrow h=\dfrac{2}{3}d\Rightarrow \dfrac{h}{2}=\dfrac{d}{3}$$
  • Question 4
    1 / -0
    Three solid spheres of a lead are melted into a single solid sphere If the radii of the three spheres be 1 cm, 6 cm and 8 cm respectively Then radius of the new sphere is :
    Solution
    Let r be the radius of the new sphere Then 
    $$\displaystyle \frac{4}{3}\pi r^{3}=\frac{4}{3}\pi \left ( 1 \right )^{3}+\frac{4}{3}\pi \left ( 6 \right )^{3}+\frac{4}{3}\pi \left ( 8 \right )^{3}$$
    $$\displaystyle \frac{4}{3}\pi \left [ \left ( 1 \right )^{3}+\left ( 6 \right )^{3}+\left ( 8 \right )^{3} \right ]=\frac{4}{3}\pi \left [ 1+216+512 \right ]$$
    or  $$\displaystyle r^{3}=729=\left ( 9 \right )^{3}$$
    $$\displaystyle \therefore $$ Radius of the new sphere (r) =9 cm
  • Question 5
    1 / -0
    The surface areas of the two spheres are in the ratio $$1:2$$. The ratio of their volumes is 
    Solution
    Area ratio = 1 : 2 (given)
    $$\displaystyle \therefore $$ radii ratio $$\displaystyle =1\sqrt{2}$$
    Volume ratio $$\displaystyle =1^{3}:\left ( \sqrt{2} \right )^{3}=1:2\sqrt{2}$$
  • Question 6
    1 / -0
    The volume of a right circular cylinder is 1100 $$\displaystyle cm^{3} $$ and the radius of its base is 5 cm. The area of its curved surface is
    Solution
    Volume of a cylinder$$=2\times\pi \times r\times h$$
    $$\Rightarrow 1100=\displaystyle \dfrac{22}{7}\times 5^{2}\times h$$       {$$\because volume = 1100 \,cm^3\, is\, given$$}

          $$\Rightarrow h =14cm$$

    $$\therefore \displaystyle C.S.A =2\times \dfrac{22}{7}\times 5\times 14$$
    $$\therefore C.S.A=440cm^{2}$$
  • Question 7
    1 / -0
    If the radius of the base of a cylinder is $$2$$ cm and its height $$7$$ cm, then what is its curved surface area?
    Solution
    Given, $$r=2$$ cm, $$h=7$$ cm

    Then curved surface area $$=2 \pi r h$$

    $$=2\times \dfrac{22}{7}\times 2\times 7$$

    $$=88 cm^{2}$$
  • Question 8
    1 / -0
    A sphere of diameter $$10$$ cm weighs $$44$$ kg. The weight of a sphere of the same material whose diameter is $$6$$ cm is
    Solution
    Let the weight of the sphere of diameter $$6$$ cm be $$x$$ kg and density of the material be $$d$$ gm/c.c.

    $$\displaystyle\therefore\frac{x}{4.4}=\frac{\displaystyle\frac{4}{3\pi}\times3^3\times d}{\displaystyle\frac{4}{3\pi}\times5^3\times d}$$

    $$\displaystyle\implies x=\frac{4.4\times27}{125}=0.9504\:kg$$
  • Question 9
    1 / -0
    Find the volume of a hemisphere of radius $$6.3 \ cm$$ ($$\displaystyle \pi =22/7$$)
    Solution
    $$\Rightarrow$$  Volume of a hemisphere $$=\dfrac{2}{3}\pi r^3$$

                                                    $$=\dfrac{2}{3}\times \dfrac{22}{7}\times (6.3)^3$$

                                                    $$=\dfrac{2}{3}\times \dfrac{22}{7}\times 6.3\times 6.3 \times 6.3$$

                                                    $$=2\times 22\times 2.1\times 0.9\times 6.3\\$$
                                                    $$=523.9\,cm^3$$

  • Question 10
    1 / -0
    How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm if each bullet has radius 2 cm?
    Solution
    Volume of the cube of side 44 $$\displaystyle cm^{2}$$=$$\displaystyle 44\times 44\times 44cm^{3}$$
    Let the number of bullets be N Radius is 2 cm Therefore
    Total volume of N spheres=Volume of the cube
    $$\displaystyle N\cdot \frac{4}{3}\times \frac{22}{7}\times 2\times 2\times 2=44\times 44\times 44$$
    $$\displaystyle N=\frac{44\times 44\times 44\times 3\times 7}{4\times 22\times 2\times 2\times 2}=2541cm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now