Self Studies

Surface Areas and Volumes Test - 34

Result Self Studies

Surface Areas and Volumes Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the volume of the cuboid of the brick? (Given : length $$= 23$$ cm, breadth $$= 10$$ cm, height $$= 12$$ cm)
    Solution
    $$Volume\ of\ cuboid=length\times breadth\times height$$
    $$length=223\ cm$$
    $$breadth=10\ cm$$
    $$height=12\ cm$$
    $$volume=23\times 10\times 12=2760\ cm^3$$
  • Question 2
    1 / -0
    Find the volume of this rectangular prism (cuboid). $$($$Given: $$L = 2$$ cm, $$B = 10$$ cm, $$H = 30$$ cm$$)$$
    Solution
    Volume of the cuboid $$=$$ length $$\times$$ breadth $$\times$$ height
    Therefore, length $$= 2$$ cm, breadth $$= 10$$ cm, height $$= 30$$ cm
    Volume of the cuboid $$=$$ $$\displaystyle 2\times 10\times 30=600{ cm }^{ 3 }$$
  • Question 3
    1 / -0
    A plastic box $$3.5$$ m long, $$2$$ m wide and $$20$$ m deep is to be made. Find its volume.
    Solution
    Volume of the plastic box $$=$$ length $$\times $$ breadth $$\times$$ height
    Therefore, length $$= 2$$ m, breadth $$= 20$$ m, height $$= 3.5$$ m
    Therefore, volume $$=$$ $$\displaystyle 2\times 20\times 3.5=140{ m }^{ 3 }$$
  • Question 4
    1 / -0
    If the side of cube is $$2\text{ m}$$, then surface area of cube is
    Solution
    Given, side of a cube $$=2\text{ m}$$ 
    Let $$'a'$$ be the length of the side of the cube.
    Surface area of the cube $$=$$ $$6 \times a^2$$
    $$= 6 \times 2^2$$
    $$=6 \times 4$$
    $$=24 \text{ m}^2$$
    So, option A is correct.
  • Question 5
    1 / -0
    If $$s$$ represents the side, then the formula of surface area of cube is
    Solution
    Side of the cube $$=$$ $$s$$
    Area of $$1$$ surface of cube $$=s \times s = s^2$$
    A cube has $$6$$ surfaces.
    $$\therefore \mbox{Total surface area of cube = }$$$$6 \times \mbox{Area of 1 surface}$$ $$=6s^2$$
    So, option A is correct.
  • Question 6
    1 / -0
    The side of a cube 4 cm. Its area is---
    Solution
    TSA of a cube  $$= 4$$ $$\times \,\, (Side)^2$$
                              $$= 4$$ $$\times \,\, (4)^2$$ sq. cm
                              $$= 4$$ $$\times$$ 16 sq. cm
                              $$= 64$$ sq. cm
  • Question 7
    1 / -0
    Capacity is not measured in ..........
    Solution

  • Question 8
    1 / -0
    Find the total surface area of the given cuboid.

    Solution
    Given, length $$(l)=8\ m$$
    breadth $$(b)=5\ m$$
    height $$(h)=2\ m$$

    Surface area of the cuboid $$\displaystyle =2\times \left( lb+lh+bh \right) $$

                                                  $$\displaystyle =2\times \left( 8\times 5+8\times 2+5\times 2 \right) \ m^2$$

                                                  $$\displaystyle =2\times \left( 40+16+10 \right) \ m^2$$

                                                  $$\displaystyle =2\times 66\ m^2$$

                                                  $$\displaystyle =132\ { m }^{ 2 }$$


    Hence, total surface area is $$132\ { m }^{ 2 }$$
  • Question 9
    1 / -0
    Kyle bought 2 snack boxes. Box A has a measure of $$2\  in\times 3\  in\times 5 \ in.$$ Box B has a measure of $$11 \ in\times 4\  in \times 3\  in.$$ Find the surface area of the boxes and their difference.
    Solution
    Surface area of rectangle is  2 x (Length x width + Length x height + Width x height)

    Here Box A has length $$= 2$$ in, height $$= 3$$ in and width $$= 5$$ in

    Therefore, the surface area of Box A is:

    $$A=2((2\times 5)+(2\times 3)+(3\times 5))=2(10+6+15)=2\times 31=62$$ in$$^2$$

    Now, Box B has length $$= 11$$ in, height $$= 4$$ in and width $$= 3$$ in

    Therefore, the surface area of Box B is:

    $$A=2((11\times 4)+(11\times 3)+(4\times 3))=2(44+33+12)=2\times 89=178$$ in$$^2$$

    Hence, the difference between the surface area of box A and box B is $$178-62=116$$ in$$^2$$.
  • Question 10
    1 / -0
    What is the surface area of a television $$20$$ inches long, $$15$$ inches wide and $$5$$ inches high?
    Solution
    Surface area$$ = 2 ($$Length $$\times$$ width $$+$$ Length $$\times$$ height $$+$$ Width $$\times$$ height$$)$$
    Length $$= 20$$ in; Height $$= 5$$ in; Width $$= 15$$ in
    $$\displaystyle = 2\times \left( 20\times 15+20\times 5+15\times 5 \right) $$
    $$\displaystyle = 2\times \left( 300+100+75 \right) $$
    $$\displaystyle = 2\times 475$$
    $$\displaystyle = 950{\  in }^{ 2 }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now