Self Studies

Surface Areas and Volumes Test - 41

Result Self Studies

Surface Areas and Volumes Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If radius of sphere is doubled, what is the ratio of volume of original sphere to that of second?
    Solution
    Given, radius of a sphere is doubled, i.e. $$\displaystyle r=2r$$
    Volume of sphere $$\displaystyle =\frac { 4 }{ 3 } \pi { r }^{ 3 }$$ (original)
    Vol of new sphere $$\displaystyle =\frac { 4 }{ 3 } \pi { \left( 2r \right)  }^{ 3 }=\frac { 4 }{ 3 } \pi { \left( 8 \right) r }^{ 3 }$$
    Volume of original sphere /  vol. of second sphere $$\displaystyle =\frac { { 4 }/{ 3 }\pi { r }^{ 3 } }{ { 4 }/{ 3 }\pi { r }^{ 3 }\left( 8 \right)  } =\frac { 1 }{ 8 } $$
  • Question 2
    1 / -0

    Fill in the blank: 

    ____________ is the measure of the amount of space inside of a solid figure, like a cube, ball, cylinder or pyramid.

    Solution
    Volume is the measure of the amount of space inside of a solid figure, like a cube, ball, cylinder or pyramid.
  • Question 3
    1 / -0
    The volume of the global hemisphere is $$\displaystyle 19404{ \ in }^{ 3 }$$. Find its diameter.
    Solution
    Volume of the hemisphere $$\displaystyle =\frac { 2 }{ 3 } \pi { r }^{ 3 }$$
    $$\displaystyle 19404=\frac { 2 }{ 3 } \times \frac { 22 }{ 7 } \times { r }^{ 3 }$$
    $$\displaystyle 19404\times 3\times \dfrac {7}{( 2\times 22 )} ={ r }^{ 3 }$$
    $$\displaystyle \dfrac {407484}{44}={ r }^{ 3 }$$
    $$\displaystyle { r }^{ 3 }=9261$$
    $$\displaystyle r=\sqrt [ 3 ]{ 9261 } $$
    $$\displaystyle r=21$$ in
    Diameter $$= 2 \times $$ radius
    Diameter $$=2 \times 21$$
    Diameter $$=$$ $$42$$ in
  • Question 4
    1 / -0
    The area of the hemisphere is $$\displaystyle 100{ m }^{ 2 }$$. Find its volume. (use $$\displaystyle \pi =3.14$$).
    Solution
    Area of hemisphere $$=\displaystyle 2\pi { r }^{ 2 }$$
    $$\Rightarrow \displaystyle 100=2\times 3.14\times { r }^{ 2 }$$
    $$\Rightarrow \displaystyle \dfrac {100}{( 2\times 3.14 ) }={ r }^{ 2 }$$
    $$\Rightarrow \displaystyle R=\sqrt { 15.923 } $$
    $$\Rightarrow \displaystyle R=3.99$$ m
    Volume of the hemisphere $$=$$ $$\displaystyle \frac { 2 }{ 3 } \pi { r }^{ 3 }$$
    $$\displaystyle =\frac { 2 }{ 3 } \times 3.14\times 3.99\times 3.99\times 3.99$$
    $$\displaystyle =132.97{ m }^{ 3 }$$
  • Question 5
    1 / -0
    Fill in the blank: The volume of solid objects is measured in _____ units.
    Solution
    The volume of solid objects is measured in cubic units.
  • Question 6
    1 / -0
    It cost Rs $$4020$$ to paint the inner curved surface area of hemisphere of radius $$8 m$$. If it is painted at rate of Rs.$$10\: per\: m^2$$. Find inner curved surface.
    Solution
    CSA of hemisphere $$\displaystyle =2\pi { r }^{ 2 }$$
    $$\displaystyle =2\pi { \left( 8 \right)  }^{ 2 }=2\pi \times 64=402$$
  • Question 7
    1 / -0
    If lateral surface area of a cylinder of height 10 cm is 100 cm $$^{ 2 }$$, find radius of its base.
    Solution
    Given that, the lateral surface area of a cylinder of height $$10\ cm$$ is $$100\ cm^2$$.
    To find out: The radius of the base of the cylinder.

    We know that, lateral surface area of a cylinder is $$\displaystyle 2\pi rh$$
    $$\therefore \ 2\pi rh=100\\$$
    $$\Rightarrow 2\pi r (10)=100\\$$
    $$\Rightarrow 20\pi r =100\\$$
    $$\Rightarrow r =\dfrac{100}{20\pi}\\$$
    $$\therefore \ \displaystyle r=\dfrac { 5 }{ \pi  }$$

    Hence, the radius of the base of the given cylinder is $$\dfrac { 5 }{ \pi  }$$.
  • Question 8
    1 / -0
    A brick whose length, breadth and height are $$5m, 6m$$, and $$7m$$ respectively. Find the surface area of the brick.
    Solution

    Surface area of the cuboid having length, breadth and height as $$l, b$$ and $$h$$ respectively is given as  $$2 (lb + bh + hl)$$

    Brick has the shape of cuboid. Let $$S$$ be the require surface area.

    $$S=2 (5 \times 6 + 6 \times 7 + 7 \times 5)$$

    $$2 (30 + 42 + 35)$$

    $$214 m^2$$
  • Question 9
    1 / -0
    A swimming pool is $$200$$ft long and $$14$$ ft wide and its depth being $$20$$ ft respectively. Find the volume of the pool.
    Solution
    Volume of the pool $$= l \times b \times h$$
    $$= 200 \times 14 \times 20$$
    $$= 56,000 ft^{3}$$
  • Question 10
    1 / -0
    A swimming pool is 100 m long and 15 m wide its deep and 24 m height respectively. Find the capacity of the pool.
    Solution
    Volume of the pool = $$l \times b \times  h$$
    = $$100 \times 15 \times 24$$
    = $$36000 m^3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now