Self Studies

Polynomials Test - 28

Result Self Studies

Polynomials Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Simplify : $$\displaystyle \left(\frac{3}{2}x - 0.45y\right)^2$$
    Solution
    $$\displaystyle \left(\frac{3}{2}x - 0.45y\right)^2$$
    $$=\displaystyle \left(1.5x - 0.45y\right)^2$$
    $$=\displaystyle (1.5x)^2 + (0.45y)^2- 2(1.5x)(0.45y)^2$$
    $$= 2.25x^2 +0.2025 y^2 -1.35xy$$
  • Question 2
    1 / -0
    If $$f(x) = 2x^3 - 13x^2 +17 x+12$$, then find out the value of $$f(-2)$$
    Solution
    $$f(x) = 2x^3 - 13x^2 + 17x+12$$
    $$f(-2)=2(-2)^3-13(-2)^2+17(-2)+12$$
    $$=-16 - 52 - 34 +12 =-90$$
  • Question 3
    1 / -0
    Zero of a polynomial is always zero.
    Solution
    We know that the zero of the polynomial is defined as any real value of $$x$$, for which the value of the polynomial becomes zero.

    For example: 
    Let $$f(x)=− 4x + 7$$ be the polynomial.
    To find the zero of the polynomial, we substitute $$f(x)=0$$ as shown below:
    $$f(x)=−4x+7\\ \Rightarrow 0=−4x+7\\ \Rightarrow 4x=7$$
    $$\Rightarrow x=\dfrac { 7 }{ 4 }$$.

    Therefore, $$\dfrac {7}{4}$$ is the zero of the polynomial $$f(x)=− 4x + 7$$, which contradicts the statement that zero of a polynomial is always zero.

    Hence, the zero of a polynomial is not always zero.
    Therefore, the given statement is false.

    That is, option $$B$$ is correct.
  • Question 4
    1 / -0
    If the two zeroes of a quadratic polynomial $$ax^{2} +

    bx + c$$ are negative, which of the following statements holds true?




  • Question 5
    1 / -0
    Evaluate (using formulae): $$\displaystyle \frac{2.43 \times 2.43 - 2 \times 2.43 \times 1.67 +1.67 \times 1.67}{2.43 - 1.67}$$
    Solution
    Given: $$\displaystyle \frac {2.43 \times 2.43 - 2 \times 2.43 \times 1.67 + 1.67 \times 1.67}{2.43-1.67}$$
    $$=\displaystyle \frac {(2.43)^2 - 2 \times 2.43 \times 1.67 + (1.67)^2 }{0.76}$$
    $$=\displaystyle  \frac {(2.43-1.67)^2}{0.76}$$         [ $$ \because a^2-2ab+b^2=(a-b)^2 $$]

    $$=\displaystyle  \frac {(0.76)^2}{0.76}$$

    $$=0.76$$
  • Question 6
    1 / -0
    Use the identity $$ (a+b)(a-b)=a^2-b^2$$ to evaluate:
    $$4.6\times 5.4 $$.
    Solution
    We are given the formula $$(a+b)(a-b)=a^2-b^2$$.

    We know, $$4.6 \times 5.4 = (5-0.4)(5+0.4)$$,
    where $$a=5$$ and $$b=0.4$$.

    Now, solve as shown below:
     $$4.6 \times 5.4 = (5-0.4)(5+0.4)$$
    $$={ 5 }^{ 2 }-{ 0.4 }^{ 2 }=25-0.16=24.84$$.

    Hence, $$4.6 \times 5.4 =24.84$$.

    Therefore, option $$A$$ is correct.
  • Question 7
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$8.3\times 7.7 $$.
    Solution
    We are given the formula $$(a+b)(a-b)=a^2-b^2$$.

    We know, $$8.3\times7.7=(8+0.3)(8-0.3)$$,
    where $$a=8$$ and $$b=0.3$$.

    Now, solve as shown below:
    $$8.3\times7.7$$
    $$=(8+0.3)(8-0.3)=8^{ 2 }-(0.3)^{ 2 }\\ \Rightarrow 8.3\times 7.7=64-0.09\\ \Rightarrow 8.3\times 7.7=63.91.$$

    Hence, $$8.3\times 7.7=63.91$$.

    Therefore, option $$A$$ is correct.
  • Question 8
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$9.8\times 10.2 $$.
    Solution

    We know, $$ 9.8 \times 10.2 = (10 -0.2) \times (10+0.2) $$ .

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 10 , b = 0.2 $$,

    we get,
    $$ 9.8 \times 10.2 = (10 -0.2) \times (10+0.2)=10^2-(0.2)^2 \\ =100-0.04=99.96 .$$

    Therefore, option $$D$$ is correct.

  • Question 9
    1 / -0
    Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
    $$103\times 97 $$.
    Solution

    We know, $$ 103 \times 97 = (100 + 3) \times (100 - 3) $$ .

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 100 , b = 3 $$,

    we get,
    $$ 103 \times 97 = (100 + 3) \times (100 - 3) = { 100 }^{ 2 }-{ 3 }^{ 2 } = 10000 - 9
    = 9991 $$.

    Therefore, option $$B$$ is correct.

  • Question 10
    1 / -0
    Simplify: $$\left (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}  \right)$$.
    Solution
    Given, $$(\sqrt { 5 } +\sqrt { 2 } )(\sqrt { 5 } -\sqrt { 2 } )$$.

    We know, $$(a+b)(a-b)=a^2-b^2$$.

    Applying the identity,

    $$(\sqrt { 5 } +\sqrt { 2 } )(\sqrt { 5 } -\sqrt { 2 } )$$

    $$=(\sqrt { 5 })^2- (\sqrt { 2 })^2=5-2=3$$.

    Hence, $$(\sqrt { 5 } +\sqrt { 2 } )(\sqrt { 5 } -\sqrt { 2 } )=3$$.

    Therefore, option $$A$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now