Self Studies

Polynomials Test - 29

Result Self Studies

Polynomials Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(208)^2$$
    Solution
    $$ {208}^{2} = {(200 + 8)}^{2} $$

    It is the form of $$ {(a+b)}^{2} $$, where $$ a = 200, b = 8 $$

    Applying

    the formula $$ { (a+b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } + 2ab $$

    $$ {208}^{2} = {(200 + 8)}^{2} = {200}^{2}  + { 8 }^{ 2 } + 2\times 200 \times 8 = 40000 + 64 + 3200 = 43264 $$

  • Question 2
    1 / -0
    Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(9.4)^2$$
    Solution
    $${ (a+b) }^{ 2 }\quad =\quad a^{ 2 }+b^{ 2 }+2ab\\ a=9,\quad b=0.4\\ =\quad 9^{ 2 }+0.4^{ 2 }+2*9*0.4\\ =\quad 88.36$$
  • Question 3
    1 / -0
    Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(188)^2$$
    Solution
    $$ {188}^{2} = {(200 - 12)}^{2} $$

    It is the form of $$ {(a - b)}^{2} $$, where $$ a = 200, b = 12 $$

    Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } - 2ab $$

    $$  {188}^{2} = {(200 - 12)}^{2} = {200}^{2}  + { 12 }^{ 2 } - 2\times 200 \times 12 = 40000 + 144 - 4800 = 35344 $$
  • Question 4
    1 / -0
    Evaluate using the expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
    $$(92)^2$$
    Solution
    Given: $$ {92}^{2} = {(90 + 2)}^{2} $$

    It is in the form of $$ {(a+b)}^{2} $$, where $$ a = 90, b = 2 $$.

    Applying the formula $$ { (a+b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } + 2ab $$ we get,

    $$ {92}^{2} = {(90 + 2)}^{2} $$

           $$= {90}^{2}  + { 2 }^{ 2 } + 2\times 90 \times 2 $$

           $$= 8100 + 4 + 360 = 8464 $$
  • Question 5
    1 / -0
    Evaluate:
    $$203\times 197$$
    Solution

    $$ 203 \times 197 = (200 + 3) \times (200 - 3) $$

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a =

    200 , b = 3 $$

    $$ 203 \times 197 = (200 + 3) \times (200 - 3) = { 200 }^{ 2 }-{ 3 }^{ 2 } = 40,000 - 9 = 39991 $$

  • Question 6
    1 / -0
    Evaluate:
    $$20.8 \times 19.2$$
    Solution

    $$ 20.8 \times 19.2 = (20+ 0.8) \times (20 - 0.8) $$

    Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a =

    20 , b = 0.8 $$


    $$ 20.8 \times 19.2 = (20+ 0.8) \times (20 - 0.8) = { 20 }^{ 2 }-{ 0.8 }^{ 2 } = 400 - 0.64

    = 399.36 $$


  • Question 7
    1 / -0
    Find the square of:
    $$391 $$
    Solution

    $$ {391}^{2} = {(400 - 9)}^{2} $$

    It is the form of $$ {(a - b)}^{2} $$, where $$ a = 400, b = 9 $$

    Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } - 2ab

    $$
    $$ {391}^{2} = {(400 - 9)}^{2} = {400}^{2}  + { 9 }^{ 2 } -

    2\times 400 \times 9 = 1,60,000 + 81 - 7200 = 152881 $$

  • Question 8
    1 / -0
    Find the square of:
    $$607 $$
    Solution

    $$607$$ can be written as $$600+7$$

    $$\therefore {607}^{2} = {(600 + 7)}^{2} $$
    It is the form of $$ {(a+b)}^{2} $$, where $$ a = 600, b = 7 $$
    Applying the formula $$ { (a+b) }^{ 2 } = {a}^{2}  + { b }^{ 2 } + 2ab $$
    $$  {607}^{2} = {(600 + 7)}^{2} = {600}^{2}  + { 7 }^{ 2 } +2\times 600 \times 7 = 360000 + 49 + 8400 = 368449 $$

  • Question 9
    1 / -0
    If $$1$$ is zero of the polynomial $$f(x) =a^2x^2 - 3ax +3x - 1$$, then $$a$$ is equal to
    Solution
    If $$1$$ is the zero of the polynomial $$f(x) =a^2x^2 - 3ax +3x - 1$$
    Then, $$f(x)=0$$
    $$=>a^2(1)^2-3a(1)+3(1)-1=0$$
    $$=>a^2-3a+3-1=0$$
    $$=>a^2-3a+2=0$$
    $$=>a^2-2a-a+2=0$$
    $$=>a(a-2)-1(a-2)=0$$
    $$=>(a-2)(a-1)=0$$
    $$a=2$$
    Hence, option $$B$$ is correct.
  • Question 10
    1 / -0
    If $$x = 2$$ and $$x = 3$$ are zeros of the quadratic polynomial $$x^2 + ax + b$$, the values of $$a$$ and $$b$$ respectively are
    Solution
    If $$2$$  and $$ 3 $$ are the zeros of the quadratic polynomial then
    $$\left( x-2  \right) \left( x-3  \right)$$ are the factors of the polynomial
    Thus, 
    $$\left( x-2  \right) \left( x-3  \right) $$ is the polynomial.
    $${ x }^{ 2 }-3x-2x+6$$
    $$ =>{ x }^{ 2 }-5x+6$$  ...(1)

    Now, the given polynomial is 
    $$\Rightarrow{ x }^{ 2 }+ax+b$$   ...(2)

    Comparing (1) and (2), we get
    $$a=-5 , b=6$$

    Hence, option C.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now