Self Studies

Polynomials Test - 42

Result Self Studies

Polynomials Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The zeroes of the polynomial $$P(x)=x(x-2)(x+3)$$ is
    Solution
    $$P\left(x\right)=x\left(x-2\right) \left(x+3\right)$$
    $$\therefore \ $$To find zeroes,
    $$P\left(x\right)=0$$
    $$\therefore \left(x\right) \left(x-2\right) \left(x+3\right)=0$$
    $$\therefore x=0$$ OR $$x-2=0$$ OR $$x+3=0$$
    $$\therefore x=0$$ OR $$x=2$$ OR $$x=-3$$
    $$\therefore$$ value of $$x$$ is $$ 0, 2, -3$$
  • Question 2
    1 / -0
    Degree of the polynomial $$13 + 11x + 12x^3 + 3x^2$$ is
    Solution
    The degree of an individual term of a polynomial is the exponent of its variable
    $$13+11x+12{x}^{3}+3{x}^{2}=12{x}^{3}+3{x}^{2}+11x+13$$
    The highest exponent of $$x$$ is $$3$$
    $$\therefore\,$$ Degree$$ =3$$
  • Question 3
    1 / -0
    The roots of $$x^{3}-4x^{2}-8x+8$$ are :
    Solution
    \begin{array}{l} { x^{ 3 } }-4{ x^{ 2 } }-8x+8 \\ { { suppose } }, \\ y={ x^{ 3 } }-4{ x^{ 2 } }-8x+8 \\ and\, \, \, replace\, y\, with\, \, 0. \\ { x^{ 3 } }-4{ x^{ 2 } }-8x+8=0 \\ Now,\, factorizing\, the\, equ: \\ (x+2)\, ({ x^{ 2 } }-6x+4)=0 \\ \Rightarrow x+2=0 \\ \therefore \, \, \, x=-2 \\ and,\,  \\ \, \, \, { x^{ 2 } }-6x+4=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left[ { u\sin  g\, quadratic{ {  } }formula=-\frac { { b\pm \sqrt { { b^{ 2 } }-4(ac) }  } }{ { 2a } }  } \right.  \\ \, \, \, \, substitute\, the\, values\& \, find\, the\, value\, of\, x: \\ \, \, \, \, \, \, \, a=1,\, b=-6,\, c=4 \\ \, \Rightarrow x=\, \, \frac { { -6\pm \sqrt { { { (-6) }^{ 2 } }-4(1)\, (4) }  } }{ { 2\, .1 } }  \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac { { 6\pm \sqrt { 36-16 }  } }{ { 2\,  } } =\frac { { 6\pm \sqrt { 20 }  } }{ 2 } =\frac { { 6\pm 2\sqrt { 5 }  } }{ { 2\,  } } =3\pm \sqrt { 5 }  \\ \, \, \, \, \, \, \, \, \, \, \, \, \therefore \, \, \, \, x=3+\sqrt { 5 } \, ,3-\sqrt { 5 }  \\ so,that\, we\, can\, say\, the\, value\, of\, \, x=-2,\, 3+\sqrt { 5 } \, ,3-\sqrt { 5 }  \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, or\, \, x=-2,\, 3\pm \sqrt { 5 } \,  \\ And\, the\, \, correct\, option\, is\, B. \end{array}
  • Question 4
    1 / -0
    Factorise : $${ (ax+by) }^{ 2 }+{ (2bx-2ay) }^{ 2 }-6abxy$$
    Solution
    $$\left( ax+by\right)^2+\left( 2bx-2ay\right)^2-babxy$$
    Here we will use the following identity,
    $$\Rightarrow \left( m+n\right)^2=m^2+n^2+2mn$$
    and $$\left(m-n\right)^2=m^2+n^2-2mn$$

    Using this we have :
    $$= \left(ax\right)^2+\left(by\right)^2+2axby+4\left(bx\right)^2+4\left(ay\right)^2-8axby-6abxy$$
    $$=a^2x^2+b^2y^2+4b^2x^2+4a^2y^2-14axby+2axby$$
    $$=a^2x^2+b^2y^2+4b^2x^2+4a^2y^2-12axby$$
    Hence, the answer is $$a^2x^2+b^2y^2+4b^2x^2+4a^2y^2-12axby.$$
  • Question 5
    1 / -0
    A polynomial of the degree two has _________________.
    Solution

  • Question 6
    1 / -0
    If one zero of a quadratic polynomial $$x^2+3x+k$$ is $$2$$. Find the value of $$k$$.
    Solution
    $$2$$ is a zero of $$x^2+3x+k$$.

    Thus, $$(2)^2+3(2)+k=0$$

    $$k+10=0$$

    $$k=-10$$
  • Question 7
    1 / -0
    If $$xy=20$$ and $$(x+y)^{2}=70$$, then $$x^{2}+y^{2}$$ is equal to
    Solution
    $$(x+y)^2=x^2+y^2+2xy$$

    It is given that $$(x+y)^2=70$$ and $$xy=20$$

    $$\Rightarrow 70=x^2+y^2+(2\times 20)$$

    $$x^2+y^2=70-40$$

                 $$=30$$
  • Question 8
    1 / -0
    The zeroes of the polynomial  $${ p }({ x })={ x }({ x }-1)({ x }-2)$$  are
    Solution
    $$\begin{array}{l} We\, have \\ p\left( x \right) =x\left( { x-1 } \right) \left( { x-2 } \right)  \\ for\, the\, \, zero\, polynomial \\ p\left( x \right) =x \\ \therefore x\left( { x-1 } \right) \left( { x-2 } \right) =0 \\ Here\, we\, get \\ x=0\, \, \, or\, \, \left( { x-1 } \right) =0\, \, and\, \left( { x-2 } \right) =0 \\ \therefore x=0\, \, ,\, \, \, x=1\, \, and\, x=2 \\ So,\, \left( { 0,1,2 } \right) \, are\, the\, zero\, polynomila\, of\, p\left( x \right) \,  \\ Hence,\, option\, D\, is\, the\, required\, asnwer. \end{array}$$
  • Question 9
    1 / -0
    The zero of the polynomial $$P\left( x \right) =\surd 5x-5$$ is ...... 
    Solution
    Given, $$p(x)=\sqrt{5}x-5$$.
    Here, we find zero of a polynomial when $$p(x)=0$$.
    Then, 
    $$\sqrt{5}x-5=0$$
    $$\implies$$  $$\sqrt{5}x=5$$
    $$\implies$$  $$x=\dfrac{5}{\sqrt{5}}$$
    $$\implies$$  $$x=\dfrac{5}{\sqrt{5}}\times\dfrac{\sqrt{5}}{\sqrt{5}}$$
    $$\implies$$  $$x=\dfrac{5\sqrt{5}}{5}=\sqrt{5}$$.

    Therefore, option $$A$$ is correct.
  • Question 10
    1 / -0
    The degree of the polynomial $$\frac { 4 }{ 5 } { x }^{ 2 }-\frac { 7 }{ 5 } x+\frac { 2 }{ 3 } { x }^{ 3 }+6$$ is :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now