\begin{array}{l} { x^{ 3 } }-4{ x^{ 2 } }-8x+8 \\ { { suppose } }, \\ y={ x^{ 3 } }-4{ x^{ 2 } }-8x+8 \\ and\, \, \, replace\, y\, with\, \, 0. \\ { x^{ 3 } }-4{ x^{ 2 } }-8x+8=0 \\ Now,\, factorizing\, the\, equ: \\ (x+2)\, ({ x^{ 2 } }-6x+4)=0 \\ \Rightarrow x+2=0 \\ \therefore \, \, \, x=-2 \\ and,\, \\ \, \, \, { x^{ 2 } }-6x+4=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left[ { u\sin g\, quadratic{ { } }formula=-\frac { { b\pm \sqrt { { b^{ 2 } }-4(ac) } } }{ { 2a } } } \right. \\ \, \, \, \, substitute\, the\, values\& \, find\, the\, value\, of\, x: \\ \, \, \, \, \, \, \, a=1,\, b=-6,\, c=4 \\ \, \Rightarrow x=\, \, \frac { { -6\pm \sqrt { { { (-6) }^{ 2 } }-4(1)\, (4) } } }{ { 2\, .1 } } \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac { { 6\pm \sqrt { 36-16 } } }{ { 2\, } } =\frac { { 6\pm \sqrt { 20 } } }{ 2 } =\frac { { 6\pm 2\sqrt { 5 } } }{ { 2\, } } =3\pm \sqrt { 5 } \\ \, \, \, \, \, \, \, \, \, \, \, \, \therefore \, \, \, \, x=3+\sqrt { 5 } \, ,3-\sqrt { 5 } \\ so,that\, we\, can\, say\, the\, value\, of\, \, x=-2,\, 3+\sqrt { 5 } \, ,3-\sqrt { 5 } \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, or\, \, x=-2,\, 3\pm \sqrt { 5 } \, \\ And\, the\, \, correct\, option\, is\, B. \end{array}