Self Studies

Polynomials Test - 44

Result Self Studies

Polynomials Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Zero of the polynomial $$p(x) = \sqrt{3}x + 3$$ is
    Solution

  • Question 2
    1 / -0
    For $$p(x) = 5x^2 - \dfrac{2}{3} x + 8$$, then value of $$p (3) = $$
    Solution
    The polynomial given is $$p(x)=5x^{ 2 }-\frac { 2 }{ 3 } x+8$$ after substituting the value $$x=3$$ in the polynomial we get:

    $$p(3)=5x^{ 2 }-\frac { 2 }{ 3 } x+8=5(3)^{ 2 }-\left( \frac { 2 }{ 3 } \times 3 \right) +8=\left( 5\times 9 \right) -2+8=45-2+8=53-2=51$$

    Hence, $$p(3)=51$$.

  • Question 3
    1 / -0
    Identify the zeroes of the given polynomial.

    $$p(z)=4z^2-15z\pi -4\pi ^3$$




  • Question 4
    1 / -0
    $$ \alpha, \beta, \gamma$$ be the zeroes of the expression
    $$ax^{3} +

    bx^{2} + 4x + 7$$, then the value of
    $$ \alpha\beta + \beta\gamma + \gamma\alpha$$  is:




  • Question 5
    1 / -0
    If $$p(x) = 1 + 7x - 9x^2 + \dfrac{2}{3} x^3$$, then $$p(-3) =$$
    Solution
    Consider the polynomial $$p(x)=1+7x-9x^{ 2 }+\frac { 2 }{ 3 } x^{ 3 }$$ and substitute $$x=-3$$ in the polynomial:

    $$p(-3)=1+(7\times -3)-9(-3)^{ 2 }+\frac { 2 }{ 3 } (-3)^{ 3 }=1-21-(9\times 9)+\left( \frac { 2 }{ 3 } \times -27 \right) =1-21-81-18=-119$$

    Hence, $$p(-3)=-119$$.

  • Question 6
    1 / -0
    If $$f(x)=x^{6}-10x^{5}-10x^{4}-10x^{3}-10x^{2}-10x+10$$, the value of $$f(11)$$ is
    Solution
    The given expression $$f(x)=x^6-10x^5-10x^4-10x^3-10x^2-10x+10$$ can be rewritten as 
    $$f(x)=x^{ 6 }-10(x^{ 5 }+x^{ 4 }+x^{ 3 }+x^{ 2 }+x-1)$$.

    Now, substitute $$x=11$$ in the above expression as shown below:

    $$\Rightarrow f(x)=x^{ 6 }-10(x^{ 5 }+x^{ 4 }+x^{ 3 }+x^{ 2 }+x-1)$$ 

    $$\Rightarrow f(11)=11^{ 6 }-10(11^{ 5 }+11^{ 4 }+11^{ 3 }+11^{ 2 }+11-1)$$

    $$ \Rightarrow f(11)=1771561-10(161051+14641+1331+121+11-1)$$

    $$ \Rightarrow f(11)=1771561-(10\times 177154)$$

    $$ \Rightarrow f(11)=1771561-1771540$$

    $$\Rightarrow f(11)=21$$

    Hence, $$f(11)=21$$.
  • Question 7
    1 / -0
    Two roots of the equation $$4x^3 - px^2+ qx - 2p = 0$$ are 4 and 7. What is the third root?
    Solution

  • Question 8
    1 / -0
    The equation $$8x^{6} + 72x^{5} + bx^{4} + cx^{3} - 687x^{2} - 2160x - 1700 = 0$$, as shown in the figure, has two complex roots. The product of these complex roots is

  • Question 9
    1 / -0
    Calculate the number of real numbers $$k$$ such that $$f(k)=2$$ if $$f(x)={ x }^{ 4 }-3{ x }^{ 3 }-9{ x }^{ 2 }+4$$.
    Solution
    Given, $$f(x)=x^4-3x^3-9x^2+4, f(k)=2$$
    Therefore, $$y = 2= f(x)$$
    $$\Rightarrow 2=x^4-3x^3-9x^2+4$$
    $$\Rightarrow x^4-3x^3-9x^2+2=0$$
    Then plug in consecutive numbers for $$x$$ and if the sign of $$f(x)$$ changes,
    $$f(-2) = 6 $$
    $$f(-1) = -3$$ so there's one
    $$f(0) = 2$$ so that's two
    $$f(1 ) = -9$$ so that's three
    And eventually it has to become positive again so there are four.

  • Question 10
    1 / -0
    The number of polynomials having zeroes as $$-2$$ and $$5$$ is?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now