Self Studies

Polynomials Tes...

TIME LEFT -
  • Question 1
    1 / -0

    The zeros of the polynomial $${ x }^{ 2 }-9$$ are 

  • Question 2
    1 / -0

    For equation $${ x }^{ 3 }-{ 6x }^{ 2 }+9x+k=0$$ to have exactly one root in (1, 3), the set of values of k is

  • Question 3
    1 / -0

    If the sum of two roots of the equation $${ x }^{ 3 }-p{ x }^{ 2 }+qx-r=0$$is zero, then

  • Question 4
    1 / -0

    Number of root of equation 
    3|x|-|2-x|=1
    is 

  • Question 5
    1 / -0

    The roots of the equation $$\left( x-1 \right) ^{ 3 }+8=0$$ are

  • Question 6
    1 / -0

    Let $$f ( x )$$ be a polynomial of degree 5 with leading coefficient unity, such that $$f ( 1 ) = 5 , f ( 2 ) = 4 , f ( 3 ) = 3 , f ( 4 ) = 2$$ and $$f ( 5 ) = 1 ,$$ then
    $$f ( 6 )$$ is equal to:

  • Question 7
    1 / -0

    Number of common roots of the equation $$x^4+x^2+1=0$$ and $$x^8-1=0$$ is 

  • Question 8
    1 / -0

    The product of the zero of the polynomal $${ x }^{ 2 }-4x+3$$ is .... 

  • Question 9
    1 / -0

    If the sum of two roots of the equation $$\displaystyle x^3 px^2 + qx r = 0$$ is zero , then

  • Question 10
    1 / -0

    If $$f(x)={ 4x }^{ 4 }-{ ax }^{ 3 }+{ bx }^{ 2 }-cx+5$$ (a, b, c $$\in $$ R) has four positive real zeros $${ r }_{ 1 },{ r }_{ 2 },{ r }_{ 3 },{ r }_{ 4 }$$ such that $$\frac { { r }_{ 1 } }{ 2 } +\frac { { r }_{ 2 } }{ 4 } +\frac { { r }_{ 3 } }{ 5 } +\frac { { r }_{ 4 } }{ 8 } =1$$, then a is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now