Self Studies

Lines and Angles Test - 35

Result Self Studies

Lines and Angles Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the given figure, $$\angle QPB$$ is

    Solution
    $$2x+3x+x=180^o(\text{linear pair})$$
    $$6x=180^o$$
    $$x=30^o$$
  • Question 2
    1 / -0
    Lines $$PQ$$ and $$RS$$ intersect at $$O$$. If $$\angle POS=2\angle SOQ$$ then the four angles at $$O$$ are
    Solution
    $$x+2x=180 (linear pair)\Rightarrow x={ 60 }^{ o }\Rightarrow \angle SOP={ 120 }^{ o }$$
    $$\therefore \text{four angle are at O}\quad  are\ { 60 }^{ o },{ 60 }^{ o },{ 120 }^{ o },{ 120 }^{ o }\quad $$

  • Question 3
    1 / -0
    The angle between two opposite rays is ________.
    Solution

  • Question 4
    1 / -0
    Which of the following is an obtuse angle?
  • Question 5
    1 / -0
    A transversal intersects two or more than two lines at _________ points.
    Solution
    A transversal intersects two or more than two lines at different points.
  • Question 6
    1 / -0
    Find the value of x, y and z in the adjoining figure.

    Solution
    $$In\triangle BCE$$
    $$\implies\quad \angle BEC+\angle BCE+\angle CBE={ 180 }^{ \circ  }$$
    $$\implies\quad { 90 }^{ \circ  }+{ 30 }^{ \circ  }+\angle CBE={ 180 }^{ \circ  }$$
    $$\implies\quad \angle CBE={ 60 }^{ \circ  }$$
    $$ y={ 60 }^{ \circ  }$$
    $$ In\triangle APC:$$
    $$\implies\quad { 50 }^{ \circ  }+{ 30 }^{ \circ  }+\angle APC={ 180 }^{ \circ  }$$
    $$\implies\quad \angle APC={ 100 }^{ \circ  }$$
    $$ \therefore x=180-\angle APC$$
    $$ (\because sum\quad of\quad angles\quad on\quad a\quad straight\quad line={ 180 }^{ \circ  })$$
    $$\implies\quad x={ 180 }^{ \circ  }-{ 100 }^{ \circ  }={ 80 }^{ \circ  }$$
    $$ In\triangle BOP:$$
    $$ z=x+y\quad (exterior\quad angle\quad of\quad a\quad triangle=sum\quad of\quad two\quad opposite\quad interior\quad angles)$$
    $$\implies\quad z=80+60={ 140 }^{ \circ  }$$
    $$ \therefore x={ 80 }^{ \circ  }\quad ,\quad y={ 60 }^{ \circ  }\quad ,z={ 140 }^{ \circ  }$$

  • Question 7
    1 / -0
    In $$\triangle ABC,\angle A={ x }^{ \circ },\angle B={ \left( 2x-15 \right)  }^{ \circ}$$ and $$\angle C ={ \left( 3x+21 \right)  }^{ \circ }$$. Find the value of $$x$$ and the measure of each angle of the triangle.
    Solution
    Given, $$\angle A=x^\circ$$, $$\angle B=(2x-15)^\circ$$ and $$\angle C=(3x+21)^\circ$$.
    We know, by angle sum property, the sum of angles of a triangle is $$180^\circ$$.
    Then, $$\angle A+ \angle B+ \angle C=180^\circ$$
    $$\implies$$ $$x^\circ+(2x-15)^\circ+ (3x+21)^\circ=180^\circ$$
    $$\implies$$ $$6x^\circ+6^\circ=180^\circ$$
    $$\implies$$ $$6x^\circ=180^\circ-6^\circ$$
    $$\implies$$ $$6x^\circ=174^\circ$$
    $$\implies$$ $$x^\circ=29^\circ$$.

    Therefore,
    $$\angle A=x^\circ=29^\circ$$,
    $$\angle B=(2x-15)^\circ=2\times29^\circ-15^o=58^\circ-15^\circ=43^\circ$$
    and $$\angle C=(3x+21)^\circ=3\times29^\circ+21^\circ=87^\circ+21^\circ=108^\circ$$.

    Hence, option $$B$$ is correct.
  • Question 8
    1 / -0
    From the figure, find values of $$x$$ and $$y$$. 

    Solution
    In the given triangle,
    by angle sum property,
    $$40^o+95^o+x^o=180^o.......(i)$$
    and $$x^o+y^o+102^o=180^o.......(ii)$$.

    From $$(i)$$,
    $$40^o+95^o+x^o=180^o$$
    $$\implies$$ $$135^o+x^o=180^o$$
    $$\implies$$ $$x^o=180^o-135^o$$
    $$\implies$$ $$x^o=45^o.......(iii)$$.

    Substitute $$(iii)$$ in $$(ii)$$,
    $$45^o+y^o+102^o=180^o$$
    $$\implies$$ $$y^o+147^o=180^o$$
    $$\implies$$ $$y^o=180^o-147^o$$
    $$\implies$$ $$y^o=33^o$$.

    Therefore, $$x^o=45^o$$ and $$y^o=33^o$$.
    Hence, option $$D$$ is correct.
  • Question 9
    1 / -0
    From the adjacent figure find the values of $$\angle P R S$$ (in degree).

    Solution
    We know, by exterior angle property, an exterior angle of a triangle is equal to the sum of the two interior opposite angles.

    Then, in $$\triangle PQR$$,
    $$\angle QPR+\angle PQR = \angle PRS$$
    $$\implies$$ $$35^{o}+50^{o} = \angle PRS$$
    $$\implies$$ $$\angle PRS = 85^{o}$$.

    Therefore, option $$A$$ is correct.
  • Question 10
    1 / -0
    Find the complement of the angle $$63^o$$
    Solution

    We know, two angles are complementary when they add up to $$90^o.$$

    Given, measure of one complementary angle is $$63^o.$$

    $$\Rightarrow$$ Measure of other complementary angle $$=90^o-63^o$$ $$=27^o.$$

    $$\therefore$$ Measure of a complementary angle of $$ 63^{o}=27^o$$.

    Hence, option $$B$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now