Self Studies

Quadrilaterals Test - 24

Result Self Studies

Quadrilaterals Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find $$\angle ABC$$.

    Solution
    We know, the sum of interior angles of a quadrilateral $$=360^o$$.
    Given, the angles are:
    $$ A=48^o+x,\quad B=4x,\quad C=3x\quad \& \quad D=4x.$$
    Then, 
    $$48^o+x+4x+3x+4x=360^o\\ \Rightarrow 12x+48^o=360^o\\ \Rightarrow 12x=360^o-48^o\\ \Rightarrow 12x=312^o\\ \Rightarrow x=\dfrac { 312^o }{ 12 } =26^o.$$

    $$\therefore \angle ABC=4x=4\times 26^o={ 104 }^{ o }.$$
    Therefore, option $$B$$ is correct.
  • Question 2
    1 / -0
    Given, in quadrilateral $$ABCD$$, $$\angle C = 64^{\circ}, \angle D = \angle C - 8^{\circ}, \angle A = 5(a + 2)^{\circ}$$ and $$\angle B = 2(2a+7)^{\circ}$$. Calculate $$\angle A$$.
    Solution
    Given$$\angle C={ 64 }^{ o }, \angle D= \angle C-{ 8 }^{ o }=64^o-8^o={ 56 }^{ o }, \angle A={ 5\left( a+2 \right)  }^{ o }$$ and $$ \angle B={ 2\left( 2a+7 \right)  }^{ o }.$$

    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    Then, $$\angle A+\angle B+\angle C+\angle D=360^o$$
    $$ \Rightarrow { 5\left( a+2 \right)  }+{ 2\left( 2a+7 \right)  }+64^o+56^o=360^o$$
    $$ \Rightarrow 5a+10^o+4a+14^o+120^o=360^o$$
    $$ \Rightarrow 9a=360^o-144^o$$
    $$ \Rightarrow 9a=216^o$$
    $$ \Rightarrow a=\dfrac { 216^o }{ 9 } =24^o$$.

    Therefore,
    $$\angle A={ 5\left( a+2 \right)  }^{ o }$$ $$={ 5\left( 24^o+2 \right)  }^{ o }$$ $$={ 5\times  26^o  }=130^o$$.
  • Question 3
    1 / -0
    Sum of all angles of a square is
    Solution

    $$\Rightarrow$$  $$\square  ABCD$$ is a square.
    $$\Rightarrow$$  All four sides and angles of square are equal.
    $$\Rightarrow$$  All four angles are right angle in square.
    $$\Rightarrow$$  Sum of all angles of a square $$ABCD=\angle A+\angle B+\angle C+\angle D$$
                                                                          $$=90^o+90^o+90^o+90^o$$
                                                                          $$=360^o$$
    $$\therefore$$  Sum of angles of square is $$360^o$$

  • Question 4
    1 / -0
    The angles of a quadrilateral are in the ratio 3 : 2 : 4 : 1. Find the angles. Assign a special name to the quadrilateral.
    Solution
    $$The\quad ratio\quad of\quad angles\quad of\quad quadilateral=3:2:4:1\\ Let\quad the\quad angles\quad of\quad quadilateral\quad \\ =3x+2x+4x+x=360\\ 10x=360,x=36\\ \therefore \quad angles\quad of\quad quadilateral\quad are\\ 3x=3\times 36=108\\ 2x=2\times 36=72\\ 4x=4\times 36=144\\ In\quad the\quad adjoining\quad figure\\ \angle A+\angle B=108+72=180\\ ie\quad the\quad sum\quad of\quad interior\quad angles\quad on\quad the\quad same\quad side\quad of\quad transversal\\ AB=180\\ \therefore AD\parallel BC,\\ Hence\quad quadilateral\quad ABCD\quad is\quad a\quad trapezium$$
  • Question 5
    1 / -0
    The angles $$P, Q, R$$ and $$S$$ of $$ PQRS$$ are in the ratio $$1:3:7:9$$, find the measure of each angle.
    Solution

    Given ratio of angles of quadrilateral $$PQRS$$ is $$1:3:7:9$$

    Let the angles of quadrilateral $$PQRS$$ be $$x,3x,7x,9x$$, respectively.


    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$\Rightarrow \angle P+\angle Q+\angle R+\angle S=360^o$$

    $$\Rightarrow x+3x+7x+9x=360^o$$

    $$\Rightarrow 20x=360^o$$

    $$\Rightarrow x=\dfrac{360^o}{20}$$

    $$\therefore x=18^o$$.


    $$\therefore \angle P =x= 18^o$$,

    $$ \angle Q =3x=3\times 18^o =54^o$$,

    $$ \angle R =7x=7\times 18^o =126^o$$

    and $$ \angle S =9x=9 \times 18^o =162^o$$.


    Hence, option $$B$$ is correct.

  • Question 6
    1 / -0
    The angles of a quadrilaterals are in the ratio $$3 : 5 : 9 : 13$$. All the angles of the quadrilaterals are:
    Solution

    Given ratio of angles of quadrilateral $$PQRS$$ is $$3:5:9:13$$

    Let the angles of quadrilateral $$PQRS$$ be $$3x,5x,9x,13x$$, respectively.


    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$\Rightarrow \angle P+\angle Q+\angle R+\angle S=360^o$$

    $$\Rightarrow 3x+5x+9x+13x=360^o$$

    $$\Rightarrow 30x=360^o$$

    $$\Rightarrow x=\dfrac{360^o}{30}$$

    $$\therefore x=12^o$$.


    $$\therefore \angle P =3x= 3\times 12^o=36^o$$,

    $$ \angle Q =5x=5\times 12^o =60^o$$,

    $$ \angle R =9x=9\times 12^o =108^o$$

    and $$ \angle S =13x=13 \times 12^o =156^o$$.


    Hence, option $$A$$ is correct.

  • Question 7
    1 / -0
    In the figure, $$LM = LN,\  \angle PLN = 110^{\circ}$$. Then,the measure of $$\angle MLN$$ in degrees is____.

    Solution
    In quadrilateral $$PLQN$$,
    $$\angle P + \angle Q + \angle PLN + \angle QNL = 360^o $$ ...(Sum of angles of quadrilateral)
    $$90^o + 90^o + 110^o + \angle QNL = 360^o$$
    $$\angle QNL = 70^{\circ}$$.

    In $$\triangle LMN$$,
    $$\angle QNL=\angle MNL=70^o$$
    $$\angle LMN = \angle MNL$$          ...(Isosceles triangle property)
    $$\therefore \angle MNL= \angle LMN = 70^{\circ}$$.

    We know, sum of angles of the $$\triangle LMN$$,
    $$\angle MLN + \angle LNM + \angle LMN = 180^o $$
    $$\angle MLN + 70^o + 70^o = 180^o $$
    $$\angle MLN = 180^o - 140^o $$
    $$\angle MLN = 40^{\circ}$$.

    Therefore, option $$B$$ is correct.
  • Question 8
    1 / -0
    In the above figure, $$ABCD$$ is a parallelogram, $$AL \bot CD$$ and $$AM \bot BC$$. If $$AB = 12\space cm, AD = 8\space cm$$ and $$AL = 6\space cm$$, then $$AM = $$

    Solution

    $$ABCD$$ is a parallelogram, where $$AL\perp CD$$ and $$AM\perp BC$$
    $$AB=12\,cm,\,AD=8\,cm$$ and $$AL=6\,cm$$
    We know, opposite sides of a parallelogram are equal.
    $$AB=CD$$ and $$AD=BC$$
    $$\therefore$$  $$CD=12\,cm$$ and $$BC=8\,cm$$
    $$\Rightarrow$$  Area of a parallelogram $$ABCD=AL\times CD$$
                                                                 $$=6\times 12$$
                                                                 $$=72\,cm^2$$                 ------ ( 1 )
    $$\Rightarrow$$  Area of a parallelogram $$ABCD=AM\times BC$$
                                                                 $$=AM\times 8$$         ------- ( 2 )
    Comparing ( 1 ) and ( 2 ), we get
    $$\Rightarrow$$  $$AM\times 8=72$$
    $$\Rightarrow$$  $$AM=9\,cm$$
                      

  • Question 9
    1 / -0
    Three angles of a quadrilateral are respectively equal to $$110^o$$, $$50^o$$ and $$40^o$$. Find the fourth angle.
    Solution
    Sum of all angles of a quadrilateral is $$360^0$$ 
    Then fourth angle will be =  $$360^0 - ( 110^0 + 50^0 + 40^0 )$$ 
                                               =  $$160^0$$ 

    Hence, the fourth angle is $$160^0$$ 
  • Question 10
    1 / -0
    Use the information given in figure to choose the correct value of $$x$$.

    Solution
    Since, $$EAB$$ is a straight line
    $$\therefore \angle DAE + \angle DAB = 180^{\circ}$$  ....[Linear pair]
    $$\Rightarrow 73^{\circ} + \angle DAB = 180^{\circ}$$.

    Since, by angle sum property, the sum of the angles of quadrilateral $$ABCD$$ is $$360^o$$.
    $$\angle ADC + \angle DCB + \angle CBA + \angle BAD = 360^o$$
    $$\therefore 107^{\circ} + 105^{\circ} +x+80^{\circ} = 360^{\circ}$$
    $$\Rightarrow 292^{\circ} + x = 360^{\circ}$$
    $$ x = 360^{\circ} - 292^{\circ} = 68^{\circ}$$.

    Therefore, option $$C$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now