Self Studies

Quadrilaterals Test - 25

Result Self Studies

Quadrilaterals Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a quadrilateral $$ABCD$$, if $$\angle$$ $$A = 60$$ $$^o$$ and $$\angle$$ $$B :$$ $$\angle$$ $$C :$$ $$\angle$$ $$D = 2 : 3 : 7$$, then $$\angle$$ $$D =$$ ?
    Solution
    We know, by angle sum property, the sum of all angles of a quadrilateral is $$ 360^o $$.
    Given, $$\angle B:\angle C:\angle D=2:3:7$$.
    Let the $$ \angle B = 2x ,  \angle C = 3x , \angle D= 7x  $$ and $$\angle A = 60^o $$.
    $$\Rightarrow  2x + 3x + 7x + 60^o = 360^o $$
    $$\Rightarrow  12x = 300^o $$ 
    $$\Rightarrow  x = 25^o $$.

    $$\therefore   \angle D= 7x = 7 \times  25^o = 175^o $$.

    Hence, option $$A$$ is correct.
  • Question 2
    1 / -0
    The angles of a quadrilateral are in the ratio $$3 : 5 : 9 : 13$$. Find all the angles of the quadrilateral in degrees.
    Solution
    Let the four angles of the quadrilateral be $$3x, 5x, 9x$$ and $$13x$$

     $$ 3x + 5x + 9x + 13x = { 360 }^{ \circ  } $$

     [sum of all angles of the quadrilateral is $$ { 360 }^{ \circ  }$$]

    $$ 30x = { 360 }^{ \circ  } $$

     $$ x = { 12 }^{ \circ  } $$

    Hence, the angles of the quadrilateral are $$ 3\times{ 12 }^{ \circ  }={ 36 }^{ \circ  },5\times{ 12 }^{ \circ  }={ 60 }^{ \circ  },9\times{ 12 }^{ \circ  }={ 108 }^{ \circ  }$$ and $$13\times{ 12 }^{ \circ  }={ 156 }^{ \circ  }$$
  • Question 3
    1 / -0
    If three angles of a quadrilateral are of magnitudes $$80^\circ,\ 95^\circ,\ 120^\circ,$$ then what is the measure of the fourth angle?
    Solution

    The given angles are, $$80^\circ,\ 95^\circ,\ 120^\circ$$.

    Let the fourth angle be $$x^\circ$$

    Angle sum property states that the sum of angles of a quadrilateral is $$360^\circ$$.

    Then,   $$80^\circ+95^\circ+120^\circ+x^\circ=360^\circ$$

    $$\Rightarrow 360^\circ - (80^\circ + 95^\circ + 120^\circ ) =x^{\circ}$$

    $$\Rightarrow$$                                           $$x^\circ=360^\circ - 295^\circ$$ 

                                                         $$ =65^{\circ}$$

    Therefore, the fourth angle is $$x^\circ=65^\circ$$

    Hence, option $$B$$ is correct.

  • Question 4
    1 / -0
    In the given figure, $$AB=\,AD$$; $$CB=\,CD$$, $$\angle A={ 42 }^{ 0 }$$ and $$\angle C={ 108 }^{ 0 }$$, Find $$\angle ABC$$

    Solution
    Given: $$AB=\,AD$$; $$CB=\,CD$$, $$\angle A={ 42 }^{ 0 }$$ and $$\angle C={ 108 }^{ 0 }$$
    Join AC.
    Now, in $$\triangle ADC$$ and $$\triangle ABC$$
    $$AD = AB$$ (Given)
    $$BC = CD$$ (Given)
    $$AC = AC$$ (Common)
    Thus, $$\triangle ADC \cong \triangle ABC$$ (SSS rule)
    Hence, $$\angle CAB = \angle CAD = \frac{1}{2} \angle DAB = 21$$ (By CPCT)
    $$\angle ACB = \angle ACD = \frac{1}{2} \angle DCB = 54$$ (By CPCT)

    Now, In $$\triangle ABC$$
    $$\angle ABC + \angle CAB + \angle ACB = 180$$ (Angles sum property)
    $$\angle ABC + 21 + 54 = 180$$
    $$\angle ABC = 105^{\circ}$$
  • Question 5
    1 / -0
    In the adjoining figure $$ABC$$ is a triangle in which $$D$$ and $$E$$ are the mid points $$AB$$ and $$AC$$ respectively if $$BC  = 4.6\ \text{cm}$$ then $$DE =$$ _______

    Solution
    According to mid point theorem the line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half the third side.
    Here $$D$$ and $$E$$ are the mid points of side $$AB$$ aand $$AC$$ 
    $$\Rightarrow DE||BC$$ and $$BC=2DE$$
    $$BC=4.6\ \text{cm}$$
    $$2DE=4.6\ \text{cm}$$
    $$DE=2.3\ \text{cm}$$ 
    So option $$B$$ is correct.

  • Question 6
    1 / -0
    In a quadrilateral the angles are in the ratio $$3:4:5:6$$. Then the difference between the greatest and the smallest angle is? 
    Solution

    Given ratio of angles of quadrilateral $$ABCD$$ is $$3:4:5:6$$

    Let the angles of quadrilateral $$ABCD$$ be $$3x,4x,5x,6x$$ respectively.


    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$\Rightarrow 3x+4x+5x+6x=360^o$$

    $$\Rightarrow 18x=360^o$$

    $$\therefore x=20^o$$.


    $$\therefore \angle A =3x=3 \times 20^o =60^o$$,

    $$ \angle B =4x=4\times 20^o =80^o$$,

    $$ \angle C =5x=5 \times 20^o =100^o$$

    and $$ \angle D =6x=6 \times 20^o =120^o$$.


    $$\therefore$$ The greatest angle is $$=120^o$$

    and the smallest angle is $$=60^o$$.


    Therefore, the difference between the greatest and the smallest angle is $$=120^o-60^o=60^o$$.

    Hence, option $$B$$ is correct.

  • Question 7
    1 / -0
    Look at the pairs of shapes Which is a pair of rectangles?
    Solution
    Option B shows rectangle.
    Hence, the answer is Option B.
  • Question 8
    1 / -0
    Which of the following statement(s) is/are true?
    Solution
    No option is correct because
    1. Diagonals of trapezium do not bisect each other
    2. Diagonal of rectangle do not intersect each other at 90 degree.
    3. Diagonals of rhombus are unequal.
    So option D is correct answer 
  • Question 9
    1 / -0
    The sides of a quadrilateral are extended to make the angles as shown in the figure. Find the value of $$x.$$

    Solution
    The sum of the exterior angles of a quadrilateral is equal to $${360}^{o}.$$ So,
    $$\Rightarrow$$ $$x+{75}^{o}+{115}^{o}+{90}^{o}={360}^{o}$$
    $$\Rightarrow$$ $$x+280^o={360}^{o}$$
    $$\Rightarrow$$ $$x={360}^{o}-{280}^{o}$$
    $$\Rightarrow x={80}^{o}$$
  • Question 10
    1 / -0
    If the bisectors of the angles $$A$$ and $$B$$ of a quadrilateral $$ABCD$$ meet at $$O$$, then $$\angle AOB$$ is equal to:
    Solution
    In quad $$ABCD$$

    $$\angle A+\angle B+\angle C+\angle D={360}^{o}$$

    $$\Rightarrow$$ $$\angle A+\angle B={360}^{o}-(\angle C+\angle D)$$

    $$\Rightarrow$$ $$\cfrac{\angle A}{2}+\cfrac{\angle B}{2}={180}^{o}-\cfrac{1}{2}(\angle C+\angle D)$$

    $$\Rightarrow$$ $$\angle OAB+\angle OBA={180}^{o}-\cfrac{1}{2}(\angle C+\angle D)$$

    ($$\therefore$$ $$OA$$ bisects $$\angle A$$ and $$OB$$ bisects $$\angle B$$)

    In $$\triangle AOB$$, $$\angle AOB={180}^{o}-(\angle OAB+\angle OBA)$$

    $$={180}^{o}-[({180}^{o}-\cfrac{1}{2}(\angle C+\angle D)]$$

    $$=\cfrac{1}{2}(\angle C+\angle D)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now