Self Studies

Quadrilaterals Test - 31

Result Self Studies

Quadrilaterals Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the adjoining figure, if $$\angle A  =90^o$$, then find $$x$$.

    Solution

    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    The given angles are $$\angle A=90^o, \angle B=6x-5^o, \angle C=7x-15^o, \angle D=2x+5^o$$.


    Then, $$\angle A+\angle B+\angle C+\angle D=360^o$$

    $$\implies$$ $$90^o+6x-5^o+7x-15^o+2x+5^o=360^o$$

    $$\implies$$ $$15x+75^o=360^o$$

    $$\implies$$ $$15x=360^o-75^o=285^o$$

    $$\implies$$ $$x=19^o$$.


    Therefore, option $$B$$ is correct.

  • Question 2
    1 / -0
    The angles of a quadrilateral are in the ratio $$1:2:3:4$$. The largest angle is:
    Solution

    Given ratio of angles of quadrilateral $$ABCD$$ is $$1:2:3:4$$.

    Let the angles of quadrilateral $$ABCD$$ be $$1x,2x,3x,4x$$, respectively.

     

    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$\Rightarrow 1x+2x+3x+4x=360^o$$

    $$\Rightarrow 10x=360^o$$

    $$\therefore x=36^o$$.

     

    $$\therefore \angle A =1x=1 \times 36^o =36^o$$,

    $$ \angle B =2x=2\times 36^o =72^o$$,

    $$ \angle C =3x=3 \times 36^o =108^o$$

    and $$ \angle D =4x=4\times 36^o =144^o$$.

     

    $$\therefore$$ The largest angle $$=144^o$$.

     

    Hence, option $$D$$ is correct.

  • Question 3
    1 / -0
    In a quadrilateral $$ABCD$$, $$\angle{A}+\angle{C}$$ is $$2$$ times of $$\angle{B}+\angle{D}$$. If $$\angle {D}={40}^{o}$$, then $$\angle {B}=$$ _____.
    Solution
    Given, $$\angle A+\angle C=2\left(\angle B+\angle D\right)$$.
    Also, by angle sum property,
    $$\angle A+\angle B+\angle C+\angle D={360}^{0}$$
    $$\implies$$ $$\angle A+\angle C+\angle B+\angle D={360}^{0}$$
    $$\implies$$ $$2\left(\angle B+\angle D \right)+ \left(\angle B+\angle D \right)= {360}^{0}$$
    $$\implies$$ $$ 3\left(\angle B+\angle D \right)= {360}^{0}$$
    $$\implies$$ $$\angle B+\angle D={120}^{0}$$
    $$\implies$$ $$\angle B+{40}^{0}={120}^{0} $$
    $$\implies$$ $$ \angle B={80}^{0}$$.

    Therefore, option $$B$$ is correct.
  • Question 4
    1 / -0
    Read the following statement and choose the correct alternative from those given below them:
    (i) Diagonals of a rectangle are perpendicular bisectors of each other 
    (ii) Diagonals of a rhombus are perpendicular bisectors of each other 
    (iii) Diagonals of a parallelogram are perpendicular bisectors of each other 
    Solution
    $$\Rightarrow$$  Diagonals of a rectangle are equal in length but does not bisect each other perpendicularly. So, first statement is false.
    $$\Rightarrow$$  Not all types of  parallelogram diagonals bisect each other perpendicularly, so third statement is also false. 
    $$\Rightarrow$$  Diagonals of rhombus bisect each other perpendicularly.
    So, only second statement is correct.
  • Question 5
    1 / -0
    The line $$3x+2y=6$$ will divide the quadrilateral formed by the lines $$x+y=5,y-2x=8,3xy+2x=0$$ and $$4y-x=0$$ in 
    Solution
    $$\begin{array}{l} we\, \, have........... \\ x+y=5\, \, \, \, \, \, (draw\, \, a\, line\, \, on\, \, x-axis\, and\, y-axis\, as\, \, \, (0,5)\, \, \, (5,0) \\ y-2x=8\, \, \, \, (draw\, \, a\, line\, \, on\, \, x-axis\, and\, y-axis\, as\, \, \, (-4,0)\, \, \, (0,8) \\ 3y+2x=0\Rightarrow y=\frac { { 2x } }{ 3 } ,\,  \\ 4y-x=0\Rightarrow y=\frac { x }{ 4 } ,\, \, \, \,  \end{array}$$
    we get the quadrilateral point ABCD,
    and we find out the  $$3x + 2y = 6$$
               $$\begin{array}{l} 3x+2y=6-----(i) \\ equ\, \, (i)\, \, divide\, by\, \, 6 \\ \frac { x }{ 2 } +\frac { y }{ 3 } =1\, \, \, then,\, we\, get\, two\, quadrilateral\, \, as\, (AFED,EFBC) \\ So,\, that\, the\, \, \, correct\, option\, is\, A. \end{array}$$

  • Question 6
    1 / -0
    $$A B C D$$ is a quadrilateral. If $$\angle A C B = \angle A D B ,$$ then $$A B C D$$ is
    Solution
    If $$\angle ACB=\angle ADB$$,

    Then the angles in the same segment are equal.

    i.e., $$A, B, C, D$$ are concyclic.

    Hence ABCD is a cyclic quadrilateral.

  • Question 7
    1 / -0
    X, Y are the mid-points of opposite sides AB and DC respectively of a parallelogram ABCD. AY and DX are intersecting at S; CX and BY are intersecting at R. Then SXRY is a_____________.

    Solution
    Given: $$X$$ and $$Y$$ are the mid-points of opposite sides $$AB$$ and $$DC$$ of a parallelogram $$ABCD.$$

    $$AX = XB$$ and $$DY = YC$$


    $$AB = DC$$  

    $$XB = DY......(i)$$

    Also $$AB || DC...... $$(opp. sides of a ïïgm)
          $$XB || DY.....(ii)$$

    Since in quadrilateral $$XBYD, XB = DY$$ and $$XB || DY$$

     $$SYRX$$ is a parallelogram.

  • Question 8
    1 / -0
    If the angles of quadrilateral are $$x,x+20,2x+45,x+15$$. Find $$x$$.
    Solution
    Given: The angles of quadrilateral are $$x,x+20,2x+45,x+15$$

    By angle sum property, the sum of all the angles of a quadrilateral is $$360^\circ$$

    $$x+(x+20^\circ)+(2x+45^\circ)+(x+15^\circ)=360^\circ$$

    $$\implies$$ $$5x+80^\circ=360^\circ$$

    $$\implies$$ $$5x=360^\circ-80^\circ$$

    $$\implies$$ $$5x=280^\circ$$

    $$\implies$$ $$x=56^\circ$$

    Therefore, option $$B$$ is correct.
  • Question 9
    1 / -0
    In a quadrilateral $$ABCD,\angle A = 2x - {35^ \circ },\angle B = 3x - {5^ \circ },\angle C = x + {10^ \circ },\angle D = 4x + {20^ \circ },$$ find the value of $$x$$,
  • Question 10
    1 / -0
    The angles of quadrilateral are $$30,150,60$$ find the third angle 
    Solution
    The angles of quadiateral are $$30,150,60$$
    The sum of angles is $$360$$
    $$\implies x+30+150+60=360\\x=360-240\\x=120$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now