Self Studies

Quadrilaterals Test - 32

Result Self Studies

Quadrilaterals Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the angle of a quadrilateral are $${ x }^{o },(x-{ 10) }^{ o },(x+{ 30 })^{o }$$ and $$2{ x }^{ o }$$, then the greatest angle is:
    Solution
    The given angles of a quadrilateral are $${ x }^{ o },(x-{ 10) }^{ o },(x+{ 30 })^{ o }$$ and $$2{ x }^{ o }.$$
    We know, that sum of four interior angles of a quadrilateral is $$360^o$$.
    $$\therefore$$  $$x+(x-10)+(x+30)+2x=360^o$$
    $$\Rightarrow$$  $$5x+20^o=360^o$$
    $$\Rightarrow$$  $$5x=340^o$$
    $$\Rightarrow$$  $$x=\dfrac{340^o}{5}$$
    $$\Rightarrow$$  $$x=68^o$$.

    Now, measure of an angles:
    $$x^o=68^o$$,
    $$(x-10)^o=(68-10)^o=58^o$$,
    $$(x+30)^o=(68+30)^o=98^o$$
    and $$2x^o=2(68^o)=136^o$$.
    $$\therefore$$   The greatest angle is $$136^o$$.

    Hence, option $$A$$ is correct.
  • Question 2
    1 / -0
    The three angles of a quadrilateral are $${ 80 }^{ \circ  }$$,$${ 70 }^{ \circ  }$$and$${ 120 }^{ \circ  }$$. The fourth angle is:
    Solution
    Three angles of quadrilateral are :

    $$ \theta _{1} = 80^o$$, $$ \theta _{2} = 70^o$$, $$ \theta _{3} = 120^o$$.

    To find $$ \theta _{4} :$$

    We know, by angle sum property, total angle of quadrilateral $$ = 360^o$$

    Then, $$ \theta _{1} + \theta _{2} + \theta _{3} + \theta _{4} = 360^o$$

    $$\implies$$ $$ 80^o + 70^o + 120^o + \theta _{4} = 360^o$$

    $$\implies$$ $$ 270^o + \theta _{4} = 360^o$$

    $$\implies$$ $$ \theta _{4} = 360^o - 270^o$$

    $$ \therefore \theta _{4} = 90^o$$.

    Therefore, the fourth angle is  $$ 90^o $$.

    Hence, option $$C$$ is correct.
  • Question 3
    1 / -0
    Which of the following statements is false?
    Solution
    $$\textbf{Step -1: Characteristics of quadrilateral,}$$
                     $$\text{We know from the characteristics of quadrilateral that it has four sides and}$$
                     $$\text{ four vertices and four angles}$$
                     $$\text{So, option A, B are TRUE.}$$
    $$\textbf{Step -2: Checking number of diagonals.}$$
                    $$\text{Number of sides of a quadrilateral}=4$$
                    $$\text{Then, the number of diagonals}=\dfrac{4(4-3)}{2}=2$$      $$[\because\textbf{number of diagonals for side n}\mathbf{=\dfrac{n(n-3)}{2}}]$$
                    $$\text{So, option C is FALSE and D is TRUE.}$$
    $$\textbf{Hence, Option C is correct.}$$
  • Question 4
    1 / -0
    The angles of a quadrilateral are in the ratio $$ 1 : 2 : 3 : 4 $$ . Then the smallest angle is:
    Solution

    Given ratio of angles of quadrilateral $$ABCD$$ is $$1:2:3:4$$

    Let the angles of quadrilateral $$ABCD$$ be $$1x,2x,3x,4x$$, respectively.

     

    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$\Rightarrow 1x+2x+3x+4x=360^o$$

    $$\Rightarrow 10x=360^o$$

    $$\therefore x=36^o$$.

     

    $$\therefore \angle A =1x=1 \times 36^o =36^o$$,

    $$ \angle B =2x=2\times 36^o =72^o$$,

    $$ \angle C =3x=3 \times 36^o =108^o$$

    and $$ \angle D =4x=4\times 36^o =144^o$$.

     

    $$\therefore$$ The smallest angle $$=36^o$$.

     

    Hence, option $$C$$ is correct.

  • Question 5
    1 / -0
    What is the maximum number of obtuse angles that a quadrilateral can have ? 
    Solution
    We know that, the sum of all the $$4$$ interior angles of a quadrilateral is $$360^{\circ}$$
    $$\implies \theta_1+\theta_2+\theta_3+\theta_4=360^{\circ}$$
    An angle $$\theta$$ is obtuse if $$90^{\circ}< \theta < 180^{\circ}$$
    If all the angles of a quadrilateral are obtuse
    $$90^{\circ}< \theta_1 < 180^{\circ}$$   -----(1)
    $$90^{\circ}< \theta_2 < 180^{\circ}$$  -----(2)
    $$90^{\circ}< \theta_3 < 180^{\circ}$$   -----(3)
    $$90^{\circ}< \theta_4 < 180^{\circ}$$   -----(4)
    Adding (1), (2), (3) and (4)
    $$\implies 360^{\circ}<\theta_1+\theta_2+\theta_3+\theta_4<720^{\circ}$$
    Therefore all the $$4$$ angles can not be obtuse
    If three angles are obtuse say each of $$100^{\circ}$$, then the fourth angle will be $$=360^{\circ}-300^{\circ}=60^{\circ}$$
    Hence, utmost $$3$$ angles can be obtuse
  • Question 6
    1 / -0
    If two adjacent angles of a parallelogram are in the ratio $$ 2 : 3 $$ , then the measure of angles are:
    Solution
    Let the angles be $$ 2x , 3x $$ 
    $$ 2 x + 3 x = 180 $$
    $$ \Rightarrow \, 5x = 180 $$ 
    $$ \Rightarrow \, 5x = 180 $$ 
    So , the angles are 
    $$ 2 \times 36 = 72 $$ 
    $$ 3 \times 36 = 108 $$ 
  • Question 7
    1 / -0
    The three angles of a quadrilateral are $$80^o,70^o$$ and $$120^o$$. Then the fourth angle is:
    Solution
    Given the three angles of a quadrilateral are $$80^o,70^o$$ and $$120^o$$.
    Let the fourth angle be $$x$$.
    We know, by angle sum property, the sum of all the angles of a quadrilateral is $$360^0$$.
    $$\implies$$ $$80^o+70^o+120^o+x=360^o$$
    $$\implies$$ $$270^o+x=360^o$$
    $$\implies$$ $$x=360^o-270^o$$
    $$\implies$$ $$x=90^o$$.

    $$\therefore$$ The fourth angle is $$90^o$$.
    Hence, option $$C$$ is correct.
  • Question 8
    1 / -0
    Area of a quadrilateral ABCD is $$20 cm^2$$ and perpendiculars on BD from opposite vertices are 1 cm and 1.5 cm. The length of BD is
    Solution
    Area of the quadrilateral given=
    $$ \dfrac{1}{2} (sum\, of\, altitudes)\times corresponding\, diagonal $$
    $$ \rightarrow $$ $$ 20=\dfrac{1}{2}(1+1.5)\times BD $$
    $$ \rightarrow $$ $$ \dfrac{1} {2}(2.5) \times BD  = 20 cm  ^{2} $$ 
    $$ \rightarrow  BD =  20 \times\dfrac{2}{2.5} $$ = $$ \dfrac{40}{2.5}  = 16 cm$$
  • Question 9
    1 / -0
    Three angles of quadrilateral are $$ 47^{\circ}, 102^{\circ} $$ and $$ 111^{\circ} $$, then the fourth angle is equal to:
    Solution

    Let the four angles be $$ \angle A , \angle B , \angle C$$ and $$\angle D$$ .

    Given $$ \angle A=47^o , \angle B =102^o, \angle C = 111^{o} $$ .


    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$ \angle A + \angle B + \angle C + \angle D = 360^{o}  $$.


    Then, $$  \angle D $$ will be given by:

    $$\angle D = 360^o - \angle A - \angle B-\angle C $$ 

    $$ \Rightarrow \angle D =  360 ^o-47^o -102^o -111^o $$ 

    $$ \Rightarrow \angle D =  360 - 260^o$$

    $$ \Rightarrow \angle D =  100^o$$.


    The measure of fourth angle is $$ 100 ^{o}$$.

     

    Therefore, option $$B$$ is correct.
  • Question 10
    1 / -0
    In a quadrilateral $$PQRS, \angle P, \angle Q, \angle R$$ and $$\angle S$$ are interior angles. If $$\angle P: \angle Q: \angle R: \angle S = 1:2:3: 4$$, then which angle is equal to $$144^\circ$$.
    Solution

    Given ratio of angles of quadrilateral $$PQRS$$ is $$1:2:3:4$$

    Let the angles of quadrilateral $$PQRS$$ be $$1x,2x,3x,4x$$, respectively.

     

    We know, by angle sum property, the sum of angles of a quadrilateral is $$360^o$$.

    $$\Rightarrow 1x+2x+3x+4x=360^o$$
    $$\Rightarrow 10x=360^o$$

    $$\therefore x=36^o$$.

     

    $$\therefore \angle P =1x=1 \times 36^o =36^o$$,

    $$ \angle Q =2x=2\times 36^o =72^o$$,

    $$ \angle R =3x=3 \times 36^o =108^o$$

    and $$ \angle S =4x=4\times 36^o =144^o$$.

     

    $$\therefore$$ $$\angle S=144^o$$.


     Hence, option $$D$$ is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now