Self Studies

Atoms and Molecules Test - 26

Result Self Studies

Atoms and Molecules Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following gases contain the same number of molecules as that of $$16$$ g of oxygen?
    Solution
    Number of molecules = Number of moles$$\times N_A$$

    When two gases have the same number of molecules, they will contain the same number of moles.

    Number of moles of a substance= $$\dfrac{give\ mass}{molar\ mass}$$

    $$16$$ g of oxygen $$(O_2$$) corresponds to $$\dfrac{16}{32} = 0.5$$ mole.

    $$16$$ g of $$O_3$$ corresponds to $$\dfrac{16}{48} = 0.33$$ mole.

    $$32$$ g of $$SO_2$$ corresponds to $$\dfrac{32}{64} = 0.5$$ mole.

    $$16$$ g of $$SO_2$$ corresponds to $$\dfrac{16}{64} = 0.25$$ mole.

    Hence, option B is correct.
  • Question 2
    1 / -0
    $$4.6\times 10^{22}$$ atoms of an element weight $$13.8$$ g. What is the atomic mass of the element?
    Solution
    $$1$$ mole of any substance contains $$6.02 \times 10^{23}$$ atoms. 

    Thus,  $$4.6 \times 10^{22}$$ atoms corresponds to $$\dfrac{4.6 \times 10^{22}}{6.022 \times 10 ^{23}}=0.0764$$ moles.

    $$0.0764$$ moles weighs $$13.8$$ g.

    Thus, $$1$$ mole will weigh $$\dfrac{13.8}{0.0764}= 180.6 \ g$$. 

    Hence, the atomic mass of the element will be 180.6 u.
  • Question 3
    1 / -0
    The ratio of the mass of a C-12 atom to that of an atom of element X (whose atomicity is four) is $$1: 9$$. The molecular mass of element X is :
    Solution
    The mass of one mole of carbon-12 is 12 g.
    The mass of one mole of X atoms will be $$9 \times 12 = 108$$ g. 
    But here atomicity of $$X$$ is 4.
    Thus, one molecule will contain $$4X$$ atoms.
    Hence, the mass of one mole of the compound will be $$4 \times 108 = 432$$ g. This is the molecular weight.
    Hence, option $$B$$ is correct.
  • Question 4
    1 / -0
    The weight of one molecule of $$C_{60} H_{122}$$ is:
    Solution
     The molecular weight of $$C_{60}H_{122}$$ is $$842$$ g/ mol.

    One mole of $$C_{60}H_{122}$$ weighs $$6.02 \times 10^{23}$$ g.

    Thus, weight of one molecule of $$C_{60}H_{122}$$ is $$\dfrac { 842 }{ 6.02 \times 10^{ 23 } }  = 1.4 \times 10^{-21}  g$$.

    Hence, option $$C$$ is correct.
  • Question 5
    1 / -0
    Which of these has the maximum number of molecules?
    Solution
    $$\bf{Hint-}$$ $$1$$ mole of any compound containd $$N_A$$ molecules.

    $$\bf{Formula\ used-}$$
    The expression for the number of molecules is given as:

    $$Number\: of\: molecules=\dfrac { Mass}{ Molecular\: mass } \times N_A  $$, 

    where $$N_A$$ is the Avogadro number.          

    $$\bf{Explanation-}$$

    $$\bullet$$ $$N_2 \: contains\: \dfrac { 7\times N_A }{ 28 } =0.25 \times N_A\: molecules$$

    $$\bullet$$ $$H_{ 2 }\: contains\: \dfrac { 2\times N_A }{ 2 } =1 \times\ N_A\: molecules$$

    $$\bullet$$ $$NO_{ 2 }\: contains\: \dfrac { 16\times N_A }{ 46 } =0.35 \times N_A\: molecules$$

    $$\bullet$$ $$O_{ 2 }\: contains\: \dfrac { 16\times N_A }{ 32 } = 0.5 \times N_A\:molecules$$

    $$\bf{Final\ answer-}$$ $$B$$
  • Question 6
    1 / -0
    Which of the following contains highest number of atoms?
    Solution
    No. of molecules $$= No.\ of\ moles \times \ N_A$$ $$= \dfrac {Mass}{Molar\ mass} \times \ N_A$$

    No. of atoms $$= \dfrac {Mass}{Molar\ mass} \times \ N_A \times No.\ of\ atoms\ in\ 1\ molecule$$

    Option A: Number of atoms in 4 g oxygen $$O_2$$ $$=\dfrac{4}{32} \times N_A \times 2 = \dfrac{N_A} {4}$$

    Option B: Number of atoms in 4 g carbon dioxide $$CO_2$$ $$ =\dfrac{4 }{44} \times N_A\times 3 = \dfrac{N_A} {3.67}$$

    Option C: Number of atoms in 4 g helium $$He$$ $$ =\dfrac{4}{4} \times N_A \times 1= \dfrac{N_A} {1}$$

    Option D: Number of atoms in 4 g methane $$CH_4$$ $$ =\dfrac{4 }{16} \times N_A \times 5 = \dfrac{N_A} {0.8}$$

    Arranging in the order of increasing number of atoms:
    $$\dfrac{N_A} {4}$$ < $$ \dfrac{N_A} {3.67}$$ < $$ \dfrac{N_A} {1}$$ < $$\dfrac{N_A} {0.8}$$

    Hence option $$D$$ is the correct option having highest number of atoms.
  • Question 7
    1 / -0
    Different samples of water were found to contain hydrogen and oxygen in the ratio of 1 : 8 by mass. This proves the law of:
    Solution
    The Law of Constant proportion states that "A chemical compound always contains the same elements combined in the same proportion by mass."
  • Question 8
    1 / -0
    The maximum number of molecules are present in:
    Solution
    Number of molecules = Number of moles $$\times N_A$$

     $$= \dfrac {\text{given mass}} {\text{molar mass}}\times N_A$$

    The more the number of moles, the more will be the number of molecules.

    $$36$$ g of water($$H_2O$$) corresponds to $$\dfrac{36}{18} = 2$$ moles (Molar mass 18 $$ g\ mol^{-1}$$).

    $$28$$ g of $$\ CO$$ corresponds to $$\dfrac{28}{28} = 1$$ mole (Molar mass 28 $$ g\ mol^{-1}$$).

    $$46$$ g ethanol($$C_2H_5OH$$) corresponds to $$\dfrac{46}{46} = 1$$ mole (Molar mass 46 $$ g\ mol^{-1}$$).

    $$54$$ g dinitrogen pentoxide($$N_2O_5$$) corresponds to $$\dfrac{54}{108} = 0.5$$ moles (Molar mass 108 $$g\ mol^{-1}$$).

    Hence, option A is correct.
  • Question 9
    1 / -0
    The mass of one oxygen molecule is:
    Solution
    $$\bf{Hint-}$$ One mole of any gas has Avogadro's number of molecules.

    $$\bf{STEP-1}$$ To find the mass of one-mole oxygen gas molecules.

    One mole contains $$6.02\times 10^{ 23 }  \ molecules$$ of oxygen.

    $$1\ mole$$ of oxygen weighs $$32\ g$$.

    Thus, weight of $$1$$ oxygen molecule is $$ \dfrac { 32 }{ 6.023\times 10^{ 23 } } =5.312\times10^{ -23 }\ gm$$.

    $$\bf{Final answer-}$$ Option B 

  • Question 10
    1 / -0
    Which of the following contain maximum number of molecules?
    Solution
    For a molecule,
    molecular weight in grams $$=$$ Avogadro's number$$({ N }_{ A }) = 6.023 \times { 10 }^{ 23 }$$
    (A) 1g $$CO_2$$
    44 gram of  $${ CO }_{ 2 }$$ =$${ N }_{ A }$$ molecules
    $$ \therefore$$  1  gram  of  $$CO_2$$  contains $$  \dfrac{1}{44} \times N_A$$ molecules

    (B) 1g $$ { N }_{ 2 }$$
    28 gram of   $$ { N }_{ 2 } ={ N }_{ A }$$ molecules
    $$\therefore $$1 gram of 
     $$ { N }_{ 2 }$$ contains $$\dfrac{1}{28} \times N_A $$ molecules

    (C) 1g $$H_2$$
    2 gram of $$H_2$$ contains $$N_A$$molecules
    $$ \therefore$$ 1  gram of $$H_2$$ contains  $$\dfrac {1}{2} \times N_A$$ molecules

    (D) 1g  $${ CH }_{ 4 }$$
    16 gram of $${ CH }_{ 4 }$$ =$${ N }_{ A }$$ molecules
    $$\therefore$$ 1 gram of   $${ CH }_{ 4 }$$ =$${ N }_{ A }/16$$
    Maximum number of molecules are found in 1 gram hydrogen.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now