Given,
Number of molecules of X = 3 × 1 0 21 X = 3\times 10^{21} X = 3 × 1 0 21
Number of molecules of Y = 4.5 × 1 0 25 Y = 4.5\times 10^{25} Y = 4.5 × 1 0 25
Molecular weight of X = 50 X = 50 X = 50
Total mass of mixture = 1 g = 1\ g = 1 g
Formula used :
M a s s o f m i x t u r e = [ N u m b e r o f m o l e c u l e s o f X A v o g r a d o ′ s N u m b e r × M o l a r M a s s o f X ] Mass\ of\ mixture=\left[\dfrac{Number\ of\
molecules\ of\ X}{Avogrado's\ Number} \times Molar\ Mass\ of\ X\right] M a ss o f mi x t u re = [ A v o g r a d o ′ s N u mb er N u mb er o f m o l ec u l es o f X × M o l a r M a ss o f X ]
+ [ N u m b e r o f m o l e c u l e s o f Y A v o g r a d o ′ s N u m b e r × M o l a r M a s s o f Y ] +\left[\dfrac{Number\ of\
molecules\ of\ Y}{Avogrado's\ Number}\times Molar\ Mass\ of\ Y\right] + [ A v o g r a d o ′ s N u mb er N u mb er o f m o l ec u l es o f Y × M o l a r M a ss o f Y ]
Now, putting all the given values in this formula,
we get the molecular mass of Y Y Y .
1 = [ 3 × 1 0 21 6.023 × 1 0 23 × 50 ] + [ 4.5 × 1 0 25 6.023 × 1 0 23 × Y ] 1=\left[\dfrac{3\times 10^{21}}{6.023\times 10^{23}}\times 50\right]+\left[\dfrac{4.5\times 10^{25}}{6.023\times 10^{23}}\times Y\right] 1 = [ 6.023 × 1 0 23 3 × 1 0 21 × 50 ] + [ 6.023 × 1 0 23 4.5 × 1 0 25 × Y ]
⇒ 1 = 150 × 1 0 21 + 4.5 Y × 1 0 25 6.023 × 1 0 23 \Rightarrow 1=\dfrac{150\times 10^{21}+4.5Y\times 10^{25}}{6.023\times 10^{23}} ⇒ 1 = 6.023 × 1 0 23 150 × 1 0 21 + 4.5 Y × 1 0 25
⇒ 6.023 × 1 0 23 = 1 0 21 ( 150 + 4.5 Y × 1 0 4 ) \Rightarrow 6.023\times 10^{23}=10^{21}(150+4.5Y\times 10^4) ⇒ 6.023 × 1 0 23 = 1 0 21 ( 150 + 4.5 Y × 1 0 4 )
⇒ 6.023 × 1 0 23 1 0 21 = 150 + 4500 Y \Rightarrow \dfrac{6.023\times 10^{23}}{10^{21}}=150+4500Y ⇒ 1 0 21 6.023 × 1 0 23 = 150 + 4500 Y
⇒ 602.3 = 150 + 4500 Y \Rightarrow 602.3=150+4500Y ⇒ 602.3 = 150 + 4500 Y
⇒ 4500 Y = 602.3 − 150 \Rightarrow 4500Y=602.3-150 ⇒ 4500 Y = 602.3 − 150
⇒ Y = 450.3 4500 \Rightarrow Y = \dfrac{450.3}{4500} ⇒ Y = 4500 450.3
Y = 150 Y= 150 Y = 150
Therefore, on solving, we get Y = 150 Y=150 Y = 150
Therefore, the molecular weight of Y Y Y is 150 g 150g 150 g .
Hence option (B) is correct.