Given,
$$1$$ $$KClO_3$$ decomposes to give $$1$$ mole $$O_2$$
The reaction involved is
$$2KClO_3\longrightarrow 2KCl+3O_2$$
It is clear from above equation that $$2$$ moles $$KClO_3$$ produce $$3$$ moles $$O_2$$ but it is given that $$1$$ mole $$O_2$$ is produced.
$$\Rightarrow$$ Moles of $$KClO_3$$ used= $$\cfrac {1\times 2}{3}=0.66$$ moles$$\longrightarrow (1)$$
$$\therefore$$ The left over moles of $$KClO_3$$ are $$1-0.66=0.34$$ moles $$\longrightarrow (2)$$
Now the parallel reaction is
$$4KClO_3\longrightarrow 3KClO_4+KCl$$
It is clear that $$4$$ moles $$KClO_3$$ gives $$3$$ moles $$KClO_4$$ & $$1$$ mole $$KCl \longrightarrow (3)$$
Now, for determining mole fraction of $$KClO_4$$ first calculate moles of $$KClO_4$$ & $$KCl$$
From $$(2)$$ & $$(3)$$
If $$4$$ moles $$KClO_3$$ gives $$3$$ moles $$KClO_4$$
$$\Rightarrow 0.34$$ moles $$KClO_3$$ give $$\cfrac {0.34\times 3}{4}$$
$$\therefore$$ No. of moles of $$KClO_4$$ produced=$$0.255$$ moles
Now, if $$4$$ moles $$KClO_3$$ give $$1$$ mole $$KCl$$
$$\Rightarrow 0.34$$ moles $$KClO_3$$ give $$\cfrac {0.34\times 1}{4}$$ moles
$$\therefore$$ No. of Moles of $$KCl$$ produced=$$0.085$$ moles
$$\therefore$$ Total no. of Moles in final mix=$$0.255+0.085$$
$$=0.34$$ moles
$$\therefore$$ Mole fraction of $$KClO_4=\cfrac {Moles\quad of\quad KClO_4}{Total\quad moles}$$
$$=\cfrac {0.255}{0.34}$$
$$=0.75$$