Self Studies
Selfstudy
Selfstudy

Inverse Trigonometric Functions Test - 6

Result Self Studies

Inverse Trigonometric Functions Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0.25

    Evaluate sin(3 sin–1  0.4)​

    Solution

    3sin^-1(x) = sin^-1(3x - 4x^3) when -1/2 <=x <=1/2
    Definitely 0.4 comes in this range of x and so

    3sin^-1(0.4) = sin^-1[3*0.4 - 4*0.4^3]
    3sin^-1(0.4) = sin^-1[1.2 - 4*0.064]
    3sin^-1(0.4) = sin^-1[1.2 - 0.256]
    3sin^-1(0.4) = sin^-1[0.944]

    Finally , sin(3sin^-1(0.4)) = sin{sin^-1(0.944)} = 0.944

  • Question 2
    1 / -0.25

    Evaluate  

    Solution

    Correct Answer :- a

    Explanation : cos-1 (12/13) + sin-1 (3/5)

    ⇒sin-1 5/13 + sin-1 3/5  

    Using the formula, sin-1 x + sin-1 y = sin-1 ( x √1-y ²+ y √1-x ²)

    ⇒sin-1 ( 5/13 √1-9/25 + 3 √1-25/169)

    ⇒sin-1 ( 5/13 ×4/5 + 3/5 ×12/13)

    ⇒sin-1 (30 + 36 / 65)

    ⇒sin-1 (56/ 65)

  • Question 3
    1 / -0.25

    If ab + bc + ca = 0, then find  1/a2 -bc + 1/b2  –ca + 1/c2 - ab

    Solution

    1/(a ²- bc)  + 1/(b ²- ca)  + 1/(c ²- ab)
    ab + bc + ca = 0
    =>bc = -a(b + c)
    =>-bc = a(b+c)
    a ²- bc = a ²+ a(b + c) = a(a + b + c)
    Similarly b ²- ca = b(b + a + c) = b(a + b + c)
    c ²- ab  = c(a + b + c)
    = 1/a(a + b + c)   + 1/b(a + b + c)  + 1/c(a + b + c)
    =  bc/abc(a + b + c)  + ac/abc(a + b + c)  + ab/abc(a + b + c)
    = (bc + ac + ab)/abc(a + b + c)
    = (ab + bc + ac)/abc(a + b + c)
    = 0/abc(a + b + c)
    = 0

  • Question 4
    1 / -0.25

    If |x| <1 then  

    Solution


  • Question 5
    1 / -0.25

    sec-1 x + cosec-1 x =​

    Solution

    sec-1 x + cosec-1 x =​ π/2 ; x belongs to [ -1 , 1 ]

  • Question 6
    1 / -0.25

    sin 2000   + cos 2000 is

    Solution

    Because both  sin 2000   and cos 2000  lies in 3rd quadrant. In 3rd quadrant values of both sine and cosine functions are negative.

  • Question 7
    1 / -0.25

     is equal to

    Solution

    Let y = tan−1 [(a −x)/(a+x)]1/2
    put x = a cos θ
    Now, y = tan−1 [(a −a cos θ)/(a + a cos θ)]1/2
    ⇒y = tan−1 ((1 −cos θ)/(1 + cos θ))1/2
    ⇒y = tan−1 [[(1 −cos θ)(1 −cos θ)]/(1+cos θ)(1 −cos θ)]1/2
    ⇒y = tan−1 [(1 −cos θ)2/1 −cos2 θ]1/2
    ⇒y = tan−1 [(1 −cos θ)/sin θ]
    ⇒y = tan−1 [2 sin2 (θ/2)/2 sin(θ/2) . cos(θ/2)]
    ⇒y = tan−1 [tan(θ/2)]
    ⇒y = θ/2
    ⇒y = 1/2 cos−1 (x/a)

  • Question 8
    1 / -0.25

    The principal value of cos–1  (cos 5) is

    Solution

  • Question 9
    1 / -0.25

    The simplest form of  

    Solution

    (cosx −sinx)/(cosx+sinx) = (1 −tanx)/(1+tanx) 
    tan(A −B) = (tanA −tanB)/(1 + tanAtanB)
    = tan(π/4 −x)
    putting this value in question.
    tan−1 tan(π/4 −x)
    π/4 −x.

  • Question 10
    1 / -0.25

    The simplest form of  for x >0 is …​

    Solution

    tan-1 (1-cosx/1+cosx)½
    = tan-1 {(2sin2 x/2) / (2cos2 x/2)}½
    = tan-1 {(2sin2 x/2) / (2cos2 x/2)}
    = tan-1 (tan x/2)
    = x/2

  • Question 11
    1 / -0.25

    Evaluate: sin (2 sin–1 0.6)​

    Solution

    Let, sin-1 (0.6) = A …………(1)
      ( Since, sin ²A + cos ²A = 1 ⇒sin ²A = 1 - cos ²A ⇒sin A = √(1-cos ²A) )

  • Question 12
    1 / -0.25

    The principal value of cos–1  (cos 5) is

  • Question 13
    1 / -0.25

    Value of  is ​

    Solution

    Assume x >0, then
    = tan−1 x + tan−1 (1/x)
    = tan−1 x + tan−1 (1/tan tan−1 x)
    = tan−1 x + tan−1 cot tan−1 x
    = tan−1 x + tan−1 tan(π/2 −tan−1 x)
    = tan−1 x + π/2 −tan^−1 x  (∵for x >0, π2 −tan−1 x ∈(0,π/2))
    = π/2.

  • Question 14
    1 / -0.25

    Value of  

    Solution

    tan-1 [(3+2x)/(2-3x)]
    =>tan-1 [2(3/2 + x)/2(1-3/2x)]
    =>tan-1 [(3/2 + x)/(1-3/2x)]
    =>tan-1 (3/2) + tan-1 (x)

  • Question 15
    1 / -0.25

    Evaluate :cos (tan–1  x)

    Solution

    tan−1 x = θ, so that  x=tan θ. We need to determine  cos θ.
    sec2 θ= 1 + tan2 θ= 1 + x2  
    ∴s ec θ= ±√(1+x2
    Then, cos(tan−1 x) = cos θ=1/sec θ= ±1/√(1+x2 )

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now