CONCEPT:
The distance between two parallel lines such as \(\vec r = \;\overrightarrow {{a_1}} + \lambda \times \vec b\;and\;\vec r = \;\overrightarrow {{a_2}} + μ \times \;\vec b\) is given by \(d = \left| {\frac{{\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right)}}{{\left| {\vec b} \right|}}} \right|\)
CALCULATION:
Given: Equation of lines L1 and L2 are \(\vec r = \;\hat i + \hat j + \hat k + \;\lambda \times \left( {3\hat i - \hat j} \right)\;and\;\vec r = 4\hat i-\hat k + \mu \times \left( {3\hat i - \hat j} \right)\)
As we can see that, the given equation of lines are parallel.
So, by comparing the given equation of lines with \(\vec r = \;\overrightarrow {{a_1}} + \lambda \times \vec b\;and\;\vec r = \;\overrightarrow {{a_2}} + μ \times \;\vec b\)
Here, we have \(\vec b = \;3\hat i - \hat j,\;\overrightarrow {{a_1}} = \;\hat i + \hat j\ + \hat k \ and\;\overrightarrow {{a_2}} = \;4\hat i - \;\hat k\)
As we know that, distance between two parallel lines such as \(\vec r = \;\overrightarrow {{a_1}} + \lambda \times \vec b\;and\;\vec r = \;\overrightarrow {{a_2}} + μ \times \;\vec b\) is given by \(d = \left| {\frac{{\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right)}}{{\left| {\vec b} \right|}}} \right|\)
⇒ \(\overrightarrow {{a_2}} - \overrightarrow {{a_1}} = 3\hat i - \hat j - 2\hat k\) and
\(|\vec b| = \sqrt{3^2+(-1)^2}\)
\(|\vec b| = \sqrt{10}\)
\(\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right) = \left[ {\begin{array}{*{20}{c}} i&j&k\\ 3&-1&0\\ 3&-1&-2 \end{array}} \right]\)
⇒ \(\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right) = 2\hat i + 6\hat j\)
\(\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right) =\frac{2i+6j}{\sqrt{10}}\)
\(\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right) =\frac{\sqrt{2^2+6^2}}{\sqrt{10}}\)
\(\vec b \times \left( {\overrightarrow {{a_2}} - \;\overrightarrow {{a_1}} } \right) =\frac{{2\sqrt{10}}}{\sqrt{10}}\)
⇒ \(d = 2\ units \)
Hence, option D is the correct answer.