Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    ​The determinant of a 2 × 2 matrix is 100. If one Eigen value of the matrix is 10, the other Eigen value is ________.
    Solution

    Concept:

    Determinant of a matrix is the product of its eigenvalues.

    Determinant of a matrix is same as its transpose.

    Determinant of a matrix is reciprocal to its inverse.

    Calculation:

    Eigenvalues of matrix A are 10 and y.

    Determinant of matrix A = 10 × y

    100 = 10 × y

    ∴ y = 10

     the other Eigen value is 10

  • Question 2
    1 / -0

    Find the value of λ for which the vectors given are linearly dependent:

    \(\begin{array}{l} \vec a = i + 2\hat j + 3\hat k\\ \vec b = 4i + \lambda \hat j + 6\hat k\\ \vec c = 3i + 4\hat j + 5\hat k \end{array}\)

    Solution

    Concept:

    Methods to check Linearly dependent or Linearly Independent vectors:

    Let x1, x2, x3 ….. xr are the n-vectors.

    Consider A = [x1, x2, x3…. xr]n × r

    General Method:

    1) of ρ(A) = number of vector (R), then Linearly Independent.

    2) If ρ(A) < number of vector (r), then Linearly Dependent

    Matrix method:

    If A is a square matrix :

    1) |A| ≠ 0, vectors are Linearly Independent.

    2) If |A| = 0, vectors are Linearly Dependent.

    Calculation:

    For linearly dependent vectors, |A| = 0

    ⇒ \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 4&\lambda &6\\ 3&4&5 \end{array}} \right]\)

    |A| = 1(5λ - 24) – 2(20 - 18) + 3 (16 – 3λ)

    |A| = 5λ – 24 – 4 + 48 – 9λ λ = 5

    Hence for the vectors to be linearly dependent λ = 5.

  • Question 3
    1 / -0
    Matrix \(A = \left[ {\begin{array}{*{20}{c}} 1&4\\ { - 1}&{ - 2} \end{array}} \right]\) is -Nilpotent matrix of Index -
    Solution

    A square matrix ‘A’ such that Ak = 0 where ‘k’ is the least positive integer, is called the Nilpotent matrix of index ‘k’.

    Calculation:

    Here,\(A = \left[ {\begin{array}{*{20}{c}} 1&4\\ { - 1}&{ - 2} \end{array}} \right]\)

     \({A^2} = \left[ {\begin{array}{*{20}{c}} 1&4\\ { - 1}&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&4\\ { - 1}&{ - 2} \end{array}} \right]\) \( = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0 \end{array}} \right] = 0\)

    Hence the index of the given matrix is 2

  • Question 4
    1 / -0

    Let A3 × 3 is a real symmetric matrix and λ1 and λ2 are the eigen values of the matrix. The corresponding eigen vector is \(\left[ {\begin{array}{*{20}{c}} 2\\ 2\\ \lambda \end{array}} \right]\) and \(\left[ {\begin{array}{*{20}{c}} 1\\ 0\\ 1 \end{array}} \right]\) respectively.

    Thus for both λ1 and λ2 ≠ 0, the correct value of λ is _____.

    Solution

    Concept:

    For real symmetric matrix, Eigen vector corresponding to different eigen values are Orthogonal.

    Orthogonal vectors:

    X1 and X2 are called Orthogonal if x1 x2 = 0

    Three or more vectors are Orthogonal if they are pair-wise orthogonal.

    i.e. x1 x2 = x2 x3 = x3 x1 = 0

    Calculation:

    For vectors \(\vec A = \left[ {\begin{array}{*{20}{c}} 2\\ 2\\ \lambda \end{array}} \right]\)and \(\vec B = \left[ {\begin{array}{*{20}{c}} 1\\ 0\\ 1 \end{array}} \right]\) to be orthogonal, \(\vec A \cdot \vec B = 0\) 

    ⇒ 2 × 1 + 2 × 0 + λ × 1 = 0 ⇒ λ = -2

  • Question 5
    1 / -0
    If a square matrix \(A = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 0&2&1\\ { - 1}&2&2 \end{array}} \right]\) then which of the following will be eigenvalue of adj (A)?
    Solution

    Concept:

    • The roots of characteristic equation |A - λI| = 0 are known as Eigenvalues of matrix A.
    • To each Eigenvalue of λ if there exists a non-zero vector X such that AX = λX then X is called Eigenvector of matrix A corresponding to the Eigenvalue λ.
    • Eigenvalue of adj (A) \(= \frac{{\left| A \right|}}{\lambda }\)

    Calculation:

    Characteristic Equation of A is |A - λI|  = 0

    \(\left| {\begin{array}{*{20}{c}} {\left( {1 - \lambda } \right)}&2&2\\ 0&{\left( {2 - \lambda } \right)}&1\\ { - 1}&2&{\left( {2 - \lambda } \right)} \end{array}} \right| = 0\)

    λ3 – 5λ2 + 8λ - 4 = 0

    (λ - 1) (λ - 2)2 = 0

    λ = 1, 2, 2 are the eigen values.

    Eigenvalue of adj (A) \(= \frac{{\left| A \right|}}{\lambda }\)

    \(\left| A \right| = \left| {\begin{array}{*{20}{c}} 1&2&2\\ 0&2&1\\ { - 1}&2&2 \end{array}} \right| = 1\left( {4 - 2} \right) + 2\left( { - 1} \right) + 2\left( 2 \right) = 4\)

    Eigenvalues of adj(A) are \(\frac{4}{1},\frac{4}{2},\frac{4}{2} = 4,\;2,\;2\)

  • Question 6
    1 / -0
    Let \(P = \left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]\) and \(D = \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&{ - 2} \end{array}} \right]\). If A = PDP-1 then A5 is
    Solution

    Concept:

    Diagonalization of matrix:

    If a square matrix Q of order n has n linearly independent Eigen vectors, then matrix P can be found such that \({P^{ - 1}}QP\) is a diagonal matrix.

    Let Q be a square matrix of order 3.

    Let λ1, λ2, and λ3 be Eigen values of matrix Q and \({X_1} = \left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{y_1}}\\ {{z_1}} \end{array}} \right],\;{X_2} = \left[ {\begin{array}{*{20}{c}} {{x_2}}\\ {{y_2}}\\ {{z_2}} \end{array}} \right],\;{X_3} = \left[ {\begin{array}{*{20}{c}} {{x_3}}\\ {{y_3}}\\ {{z_3}} \end{array}} \right]\) be the corresponding Eigen vectors.

    Let denote the square matrix \(\left[ {\begin{array}{*{20}{c}} {{X_1}}&{{X_2}}&{{X_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{x_1}}&{{x_2}}&{{x_3}}\\ {{y_1}}&{{y_2}}&{{y_3}}\\ {{z_1}}&{{z_2}}&{{z_3}} \end{array}} \right]\) by P.

    Now, the given matrix A can be diagonalized by \(D = {P^{ - 1}}QP\)

    Or the matrix A can be represented by \(Q = PD{P^{ - 1}}\)

    Where D is the diagonal matrix and it is represented by \(D = \left[ {\begin{array}{*{20}{c}} {{\lambda _1}}&0&0\\ 0&{{\lambda _2}}&0\\ 0&0&{{\lambda _3}} \end{array}} \right]\)

    Properties of Eigen values:

    The sum of Eigen values of a matrix A is equal to the trace of that matrix A

    The product of Eigen values of a matrix A is equal to the determinant of that matrix A

    Calculation:

    \(P = \left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]\) 

    \({P^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 1&{ - 3}\\ 0&1 \end{array}} \right]\) 

    The Eigen values of A = 2, -2

    The Eigen vectors of \(A = \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right],\;\left[ {\begin{array}{*{20}{c}} 3\\ 1 \end{array}} \right]\) 

    The Eigen values of A5 = 25, -25 = 32, -32

    The Eigen vectors of \({A^5} = \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right],\;\left[ {\begin{array}{*{20}{c}} 3\\ 1 \end{array}} \right]\) 

    A5 = P D P-1

    \( = \left[ {\begin{array}{*{20}{c}} 1&3\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {32}&0\\ 0&{ - 32} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 3}\\ 0&1 \end{array}} \right]\) 

    \( = \left[ {\begin{array}{*{20}{c}} {32}&{ - 96}\\ 0&{ - 32} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 3}\\ 0&1 \end{array}} \right]\) 

    \( = \left[ {\begin{array}{*{20}{c}} {32}&{ - 192}\\ 0&{ - 32} \end{array}} \right]\) 

  • Question 7
    1 / -0

    Find the values of a and b if the equations have a unique solution.

    2x + 4y + 5z = 6

    2x + 5y + 6z = 7   

    2x + 5y + (a+2) z = (b + 2)

    Solution

    Concept:

    The number of solutions can be determined by finding out the rank of the Augmented matrix and rank of the Coefficient matrix.

    • If rank(Augmented matrix) = rank(Coefficient matrix) = no. of variables then no of solutions = 1.
    • If rank(Augmented matrix)  ≠ rank(Coefficient matrix) then no of solutions = 0.
    • If rank(Augmented matrix) = rank(Coefficient matrix) < no. of variables, no of solutions = infinite.

    Calculation:

    Augmented matrix is \(A:B = \left[ {\begin{array}{*{20}{c}} 2&4&{5\;:6}\\ 2&5&{6\;:7}\\ 2&5&{\left( {a + 2} \right)\;:\left( {b + 2} \right)} \end{array}} \right]\)

    Applying Elementary operations: R2 → R2 – R1, R3 →  R3 – R2

    \(A\;:B = \left[ {\begin{array}{*{20}{c}} 2&4&{5\;:6}\\ 0&1&{1\;:1}\\ 0&0&{a - 4\;:b - 5} \end{array}} \right]\)

    For unique solution, ρ[A] = ρ[A, B] = Number of variables

    When, a – 4 ≠ 0 ⇒ a ≠ 4 and b can take any real value,

     ρ[A] = 3 and ρ[A, B] = 3 = Number of variables

    Hence the system of solutions have unique solution when a ≠ 4 and b can take any real value.

  • Question 8
    1 / -0
    If  \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3&4\\ 0&5&6&7\\ 0&0&8&9\\ 0&0&0&{10} \end{array}} \right]\) then the value of \(adj\left( {adj\left( A \right)} \right)\;?\)
    Solution

    \(adj\left( {adj\left( A \right)} \right)\; = \;{\left| A \right|^{n - 2}A}\)

    n = 4 (since A4x4)

    A is upper triangular matrix

    ∴ product of diagonal elements = \(\left| A \right|\)

    \(\left| A \right| = \left| {\begin{array}{*{20}{c}} 1&2&3&4\\ 0&5&6&7\\ 0&0&8&9\\ 0&0&0&{10} \end{array}} \right| = 1 \times 5 \times 8 \times 10 = 400\)

    \({\left| A \right|^{n - 2}} = \;{\left| A \right|^{4 - 2}} = {400^2} = 160000\)

    \(adj\left( {adj\left( A \right)} \right)\; = \;{\left| A \right|^2}A\)

    \( = 160000 \times \left[ {\begin{array}{*{20}{c}} 1&2&3&4\\ 0&5&6&7\\ 0&0&8&9\\ 0&0&0&{10} \end{array}} \right]\)

    \(= 16000 \times \left[ {\begin{array}{*{20}{c}} {10}&{20}&{30}&{40}\\ 0&50&{60}&{70}\\ 0&0&{80}&{90}\\ 0&0&0&{100} \end{array}} \right]\)

    Note:

    \(\left| A \right|\) is a determinant of matrix A

  • Question 9
    1 / -0

    Which is not the eigenvector for the given matrix

    \(\left[ {\begin{array}{*{20}{c}} 3&1&4\\ 0&2&6\\ 0&0&5 \end{array}} \right]\) ?

    Solution

    Characteristic equation of given matrix

    \(\left| {\begin{array}{*{20}{c}} {3 - \lambda }&1&4\\ 0&{2\; - \;\lambda }&6\\ 0&0&{5 - \;\lambda } \end{array}} \right| = 0\)

    \(\left( {3\; - \;\lambda } \right) \times \left( {2\; - \lambda } \right) \times \left( {5\; - \;\lambda } \right)\; = 0\)

    Eigenvalues: 2, 3 and 5

    Eigenvector corresponds to: λ = 2

    \(\left[ {\begin{array}{*{20}{c}} 1&1&4\\ 0&0&6\\ 0&0&5 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right]\) = 0

    \(x + y + 4z = 0\)

    \(6z = 0\)

    \(5z = 0\)

    \(\therefore z = \;0\)

    \(\therefore x = \; - y\)

    if y = -2 then x = 2

    Eigenvector: (2, -2, 0)

    Eigenvector corresponds to: λ = 3

    \(\left[ {\begin{array}{*{20}{c}} 0&1&4\\ 0&{ - 1}&6\\ 0&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right]\) = 0

    \(y + 4z = 0\)

    \(- y + \;6z = 0\)

    \(2z = 0\)

    \(\therefore z = \;0\)

    \(\therefore y = \;0\)

    x can take any value

    Eigenvector: (5, 0, 0)

    Eigen vector corresponds to: λ = 5

    \(\left[ {\begin{array}{*{20}{c}} { - 2}&1&4\\ 0&{ - 3}&6\\ 0&0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right]\) = 0

    \(0 \times z = 0\)

    ∴ z can take any value

    Let z = 1

    \(- 3y + 6z = 0\)

    \(\therefore y = \;2\)

    \(- 2x + y + 4z = 0\)

    \(\therefore x = \;3\)

    Eigenvector: (3, 2, 1)
  • Question 10
    1 / -0

    Gauss-Seidel method is used to solve the following equations (as per the given order):

    x1 + 2x2 + 3x3 = 5

    2x1 + 3x2 + x3 = 1

    3x1 + 2x2 + x3 = 3

    Assuming initial guess as x1 = x2 = x3 = 0, the value of x3 after the first iteration is ________
    Solution

    Concept:

    Gauss Seidel Method:

    In Gauss Seidel method, the value of x calculated is used in next calculation putting other variable as 0.

    x1 + 2x2 + 3x3 = 5

    Putting x2 = 0, x3 = 0 ⇒ x1 = 5

    2x1 + 3x2 + x3 = 1

    Putting x1 = 5, x3 = 0 ⇒ x2 = -3

    3x1 + 2x2 + x3 = 3

    Putting x1 = 5, x2 = -3 ⇒ x3 = 3 – 3(5) – 2 (-3)

    x3 = 3 – 15 + 6

    x3 = -6

    Mistake Point → Don’t arrange them diagonally because It is given in question solve as per given order.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now