Concept:
Continuity:
For a function say f, \(\mathop {\lim }\limits_{x \to a} f(x)\) exists
\( ⇒ \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = l = \;\mathop {\lim }\limits_{x \to a} f(x)\), where l is a finite value.
Any function say f is said to be continuous at point say a if and only if \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\), where l is a finite value.
Calculation:
Given: The function \(f\left( x \right) = \;\left\{ {\begin{array}{*{20}{c}} {3ax + b,\;for\;x > 1}\\ {11,\;for\;x = 1}\\ {5ax - 2b,\;for\;x < 1} \end{array}} \right.\) is continuous at x = 1.
∵ f(x) is continuous at x = 1.
As we know that, if a function say f is said to be continuous at point say a if and only if \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\), where l is a finite value.
⇒ \(\mathop {\lim }\limits_{x \to 1} f(x) = f\left( 1 \right)\)
Here f(1) = 11
We know that \( ⇒ \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to 1} f(x) = f(1)\)
Right hand limit: RHL
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \;\mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \;\mathop {\lim }\limits_{h \to 0} \left[ {3a \cdot \left( {1 + h} \right) + b} \right] = \;3a + b\)
∵ \(\;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f(1)\)
⇒ 3a + b = 11 --------(1)
Left hand limit: : LHL
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \;\mathop {\lim }\limits_{h \to 0} \left[ {5a \cdot \left( {1 - h} \right) - 2b} \right] = \;5a - 2b\)
∵ \(\;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f(1)\)
⇒ 5a - 2b = 11 ------(2)
From equation (1) and (2) we get,
⇒ 2a = 3b