Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Given the following statements about a function \(f:R\rightarrow R\), select the right option:

    P: If \(f(x)\) is continuous at \(x=x_0\), then it is also differentiable at \(x=x_0\)

    Q: If \(f(x)\) is continuous at \(x=x_0\), then it may not be differentiable at \(x=x_0\)

    R: If \(f(x)\) is differentiable at \(x=x_0\), then it is also continuous at \(x=x_0\)

    Solution

    The following properties are true in calculus:

    • If a function is differentiable at any point, then it is necessarily continuous at the point.
    • But the converse of this statement is not true i.e. continuity is a necessary but sufficient condition for the Existence of a finite derivative.
    • Differentiability implies Continuity
    • Continuity does not necessarily imply differentiability.

    Hence,

    Statement P is wrong.

    Statement Q is right

    Statement R is Right

  • Question 2
    1 / -0
    Evaluate \(\mathop {\lim }\limits_{x \to 0} {\left[ {\tan \left( {\frac{\pi }{4} + x} \right)} \right]^{1/x}}\)
    Solution

    Let \(y = \mathop {\lim }\limits_{x \to 0} {\left[ {\tan \left( {\frac{\pi }{4} + x} \right)} \right]^{1/x}}\) 

    It is an indeterminate form.

    Thus using log-concept,

    log y \( = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\tan \left( {\frac{\pi }{4} + x} \right)}}{x}} \right]\) 

    Applying L-H Rule, 

    \(\log y = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\frac{1}{{\tan \left( {\frac{\pi }{4} + x} \right)}} \times {{\sec }^2}\left( {\frac{\pi }{4} + x} \right)}}{1}} \right]\) = 2

    ⇒ Iog y = 2 ⇒ y = e2
  • Question 3
    1 / -0
    Let \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {{x^2},\;\;\;if\;\;x = 2}\\ {{e^{ax}},\;\;\;if\;\;x \ne 2} \end{array}} \right.\) ; for the function to be continuous at x = 2 the value of a is
    Solution

    Concept:

    A function f(x) is said to be continuous at a point x = a, in its domain if \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{a}} \right)\) exists or its graph is a single unbroken curve.

    f(x) is Continuous at x = a ⇔ \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\)

    Calculation:

    For the function to be continuous,

    \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)

    f(2) = (x)2 = (2)2 = 4

    \(\mathop {\lim }\limits_{x \to 2} \left( {{e^{ax}}} \right) = {e^{2a}}\) 

    For continuity of the above function,

    \({e^{2a}} = 4 \Rightarrow a = \left( {\frac{{ln\;4}}{2}} \right)\)
  • Question 4
    1 / -0
    Evaluate \(\mathop {\lim }\limits_{x \to \infty } {\left( {\frac{{{e^x}}}{\pi }} \right)^{1/x}}\)
    Solution

    Let \(y = \mathop {\lim }\limits_{x \to \infty } {\left( {\frac{{{e^x}}}{\pi }} \right)^{\frac{1}{x}}}\) 

    It is a ∞° form. To evaluate such limits use log concept.

    Taking log on both sides

    \(\log y = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\log \left( {\frac{{{e^x}}}{\pi }} \right)\) 

    \( = \frac{{x\log e - \log \pi }}{x}\;\left( {\frac{\infty }{\infty }form} \right)\) 

    Now applying L-H rule,

    \( \Rightarrow \log y = \left( {\frac{{\log e - 0}}{1}} \right) \Rightarrow \log y = 1\) 

    ⇒ y = e1 = e
  • Question 5
    1 / -0
    If function \(f\left( x \right) = \;\left\{ {\begin{array}{*{20}{c}} {3ax + b,\;for\;x > 1}\\ {11,\;for\;x = 1}\\ {5ax - 2b,\;for\;x < 1} \end{array}} \right.\) is continuous at x = 1 then which of the following is true?
    Solution

    Concept:

    Continuity:

    For a function say f, \(\mathop {\lim }\limits_{x \to a} f(x)\) exists

     \( ⇒ \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = l = \;\mathop {\lim }\limits_{x \to a} f(x)\), where l is a finite value.

    Any function say f is said to be continuous at point say a if and only if \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\), where l is a finite value.

    Calculation:

    Given: The function \(f\left( x \right) = \;\left\{ {\begin{array}{*{20}{c}} {3ax + b,\;for\;x > 1}\\ {11,\;for\;x = 1}\\ {5ax - 2b,\;for\;x < 1} \end{array}} \right.\) is continuous at x = 1.

    ∵ f(x) is  continuous at x = 1.

    As we know that, if a  function say f is said to be continuous at point say a if and only if \(\mathop {\lim }\limits_{x \to a} f(x) = l = f\left( a \right)\), where l is a finite value.

    ⇒ \(\mathop {\lim }\limits_{x \to 1} f(x) = f\left( 1 \right)\)

    Here f(1) = 11

    We know that \( ⇒ \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to 1} f(x) = f(1)\)

    Right hand limit: RHL

    \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \;\mathop {\lim }\limits_{h \to 0} f\left( {1 + h} \right) = \;\mathop {\lim }\limits_{h \to 0} \left[ {3a \cdot \left( {1 + h} \right) + b} \right] = \;3a + b\)

    ∵ \(\;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f(1)\)

    ⇒ 3a + b = 11 --------(1)

    Left hand limit: : LHL

    \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{h \to 0} f\left( {1 - h} \right) = \;\mathop {\lim }\limits_{h \to 0} \left[ {5a \cdot \left( {1 - h} \right) - 2b} \right] = \;5a - 2b\)

    ∵ \(\;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f(1)\)

    ⇒ 5a - 2b = 11 ------(2)

    From equation (1) and (2) we get,

    ⇒  2a = 3b

  • Question 6
    1 / -0
    \(\mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin \left( {{x^m}} \right)}}{{{{\sin }^n}\left( x \right)}}} \right]\), m and n are finite natural numbers. What conditions should be imposed on m and n such that the above limit exists?
    Solution

    Concept:

    For the limit to exists, \(\mathop {\lim }\limits_{x \to 0} \left[ {\frac{{\sin \left( {{x^m}} \right)}}{{{{\sin }^n}\left( x \right)}}} \right]\) must be a unique finite number.

    Calculation:

    \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin \left( {{x^m}} \right)}}{{{{\sin }^n}\left( x \right)}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin \left( {{x^m}} \right)}}{{{x^m}}}} \right) \times \mathop {\lim }\limits_{x \to 0} {\left( {\frac{x}{{\sin x}}} \right)^n} \times \frac{{{x^m}}}{{{x^n}}}\) 

    \( = 1 \times 1 \times \frac{{{x^m}}}{{{x^n}}} = \frac{{{x^m}}}{{{x^n}}}\) 

    Now,

    \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^m}}}{{{x^n}}}\left\{ {\begin{array}{*{20}{c}} {\infty \;\;;\;\;m < n}\\ {1\;\;:\;\;m = n}\\ {0\;\;;\;\;m > n} \end{array}} \right.\;\) 

    For the limit to exist, it must be a finite, value which means

    m ≥ n
  • Question 7
    1 / -0

    The value of integral given below is

    \(\mathop \smallint \nolimits_0^\pi {x^2}\cos x\;dx\) 

    Solution

    Concept:

    Integration by parts:

    \(\smallint uv = u\smallint v - \smallint (\;(\frac{{du}}{{dx}}) \times \smallint v),\) here u will choose in LIATE order.

    L: logs, I: Inverse, A: Algebraic, T: Trigonometry, E: Exponential

    Calculation:

    Here u = x2 and v = cosx

    \(\smallint {x^2}cosx = {x^2}\smallint cosx - \smallint (\;(\frac{{d\left( {{x^2}} \right)}}{{dx}}) \times \smallint cosx)\;\) 

    \( = {x^2}\left( {sinx} \right) - \smallint 2x \times sinx,\) Now we will find \(\smallint xsinx\)

    \(\smallint xsinx = x\smallint sinx - \smallint (\;(\frac{{dx}}{{dx}}) \times \smallint sinx)\) 

    \(= x\left( { - cosx} \right) - \smallint - cosx\;\; = - xcosx + sinx\)  putting this value into x2cosx

    \(\smallint {x^2}cosx = {x^2}\left( {sinx} \right) - 2\smallint xsinx\) 

    \(= {x^2}sinx - 2\left( { - xcosx + sinx} \right)\) 

    \(= {x^2}sinx + 2xcosx - 2sinx\) 

    \(\left[ {{x^2}sinx + 2xcosx - 2sinx} \right]_0^\pi \) 

    \(\left[ {{\pi ^2} \times sin\pi + 2 \times \pi \;cos\pi - 2sin\pi } \right] - \left[ {0 + 0 + 2 \times sin0} \right]\) = - 2π

    Hence option 1 is the correct answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now