Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 3

Result Self Studies

Engineering Mathematics Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    1 + x + x2/2 – x4/8 – x5/15 + … =
    Solution

    Explanation:

    Try to solve options.

    Let us take option 3

    Then we can say f(x) = esin x

    F(0) = 1

    f’(x) = esin x cos x

    f’(0) = 1

    f”(x) = esin x cos2 x – esin x sin x

    f”(0) = 1

    Similarly f’’’ (0) = 0

    fiv (0) = -3

    Now from Maclaurin’s series of expansion –

    \(f\left( x \right)=f\left( 0 \right)+\frac{x}{1!}~{f}'\left( 0 \right)+\frac{{{x}^{2}}}{2!}~{f}''\left( 0 \right)+\frac{{{x}^{3}}}{3!}~{f}'''\left( 0 \right)+\frac{{{x}^{4}}}{4!}f'''\left( 0 \right)\)

    \(=1+x\cdot 1+\frac{{{x}^{2}}}{2!}~\left( 1 \right)+\frac{{{x}^{3}}}{3!}~\left( 0 \right)+\frac{{{x}^{4}}}{4!}\left( -3 \right)\)

    \(=1+x+\frac{{{x}^{2}}}{2}-\frac{{{x}^{4}}}{8}\)
  • Question 2
    1 / -0

    In the Taylor series expansion of ln x about x = 1, the coefficient of (x - 1)4 is

    Solution

    Taylor series expansion

    \(\begin{array}{l} f\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \frac{{{f^{\left( n \right)}}\left( a \right)}}{{n!}}{\left( {x - a} \right)^n}\\ f\left( x \right) = f\left( a \right) + {f^I}\left( a \right)\left( {x - a} \right) + \frac{{{f^{II}}\left( a \right)}}{{2!}}{\left( {x - a} \right)^2} + \frac{{{f^{III}}\left( a \right)}}{{3!}}{\left( {x - a} \right)^3} + \ldots \end{array}\)

    Here a = 1

    f(x) = ln n

    \({f^I}\left( x \right) = \frac{1}{x}\)

    \({f^{II}}\left( x \right) = - \frac{1}{{{x^2}}}\)

    \({f^{III}}\left( x \right) = \frac{2}{{{x^3}}}\)

    \({f^{iv}}\left( x \right) = - \frac{6}{{{x^4}}}\)

    fiv (1) = -6

    And we have to take the 4th-degree polynomial i.e n = 4.

    ∴ The coefficient of (x - 1)4 will be:

    \(\frac{{{f^4}\left( 1 \right)}}{{4!}} = - \frac{6}{{4!}} = - \frac{1}{4}\)

  • Question 3
    1 / -0
    According to the Mean Value Theorem, for a continuous function f(x) in the interval [a, b], there exists a value ξ in this interval such that \(\mathop \smallint \limits_a^b f\left( x \right)dx =\)
    Solution

    Concept:

    Mean value theorem for integrals:

    Let f be continuous on [a, b]. Then there is a point xo in (a, b) such that

    \(f\left( {{x_o}} \right) = \frac{1}{{b - a}}{\rm{\;}}\mathop \smallint \limits_a^b f\left( x \right)dx\)

    Calculation:

    \(f\left( \xi \right) = \frac{1}{{b - a}}{\rm{\;}}\mathop \smallint \limits_a^b f\left( x \right)dx\)

    \(\mathop \smallint \limits_a^b f\left( x \right)dx = f\left( \xi \right)\left( {b - a} \right)\)

  • Question 4
    1 / -0

    If z = exsiny, x = loget and y = t2 then \(\frac{{dz}}{{dt}}\)is given by the expression

    Solution

    z = exsiny ⇒ \(\frac{{\partial z}}{{\partial x}} = {e^x}siny\)

    \(\frac{{\partial z}}{{\partial y}} = {e^x}cosy\)

    x = loget ⇒ \(\frac{{dx}}{{dt}} = \frac{1}{t}\)

    and y = t2 ⇒ \(\frac{{dy}}{{dt}} = 2t\)

    \(\frac{{dz}}{{dt}} = \frac{{\partial z}}{{\partial x}}.\frac{{dx}}{{dt}} + \frac{{\partial z}}{{\partial y}}.\frac{{dy}}{{dt}}\)

    \(\frac{{{e^x}}}{t}(siny + 2{t^2}cosy)\)

  • Question 5
    1 / -0
    Consider a function f = yx, then the value of \(\left( {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right)\) at point (2, 1) is -
    Solution

    \(\frac{{\partial f}}{{\partial y}} = \frac{\partial }{{\partial y}}\left( {{y^x}} \right) = x{y^{x - 1}}\) 

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}} = \frac{\partial }{{\partial x}}\left( {x{y^{x - 1}}} \right) = x\frac{\partial }{{\partial x}}{y^{x - 1}} + {y^{x - 1}}\frac{\partial }{{\partial x}}\left( x \right)\;\) 

    \(\therefore \frac{{{\partial ^2}f}}{{\partial x\partial y}} = x\;{y^{x - 1}}\log y + {y^{x - 1}}\) 

    Putting x = 2 and y = 1,

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}} = 2 \times {1^{2 - 1}}\log 1 + {1^{2 - 1}}\) = 1
  • Question 6
    1 / -0
    If \(U = \log \left( {{x^3} + {y^3} - {x^2}y - {y^2}x} \right)\), evaluate \(\frac{{{\partial ^2}U}}{{\partial {x^2}}} + \frac{{2{\partial ^2}U}}{{\partial x\partial y}} + \frac{{{\partial ^2}U}}{{\partial {y^2}}}\)
    Solution

    Concept:

    Property of partial derivative:

    \(\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} + \frac{{2{\partial ^2}z}}{{\partial x\partial y}} = {\left( {\frac{\partial }{{\partial x}} + \frac{\partial }{{\partial y}}} \right)^2}z = \left( {\frac{\partial }{{\partial x}} + \frac{\partial }{{\partial y}}} \right)\left( {\frac{{\partial U}}{{\partial x}} + \frac{{\partial U}}{{\partial y}}} \right)\) 

    Calculation:

    \(\frac{{\partial U}}{{\partial x}} + \frac{{\partial U}}{{\partial y}} = \frac{{\left( {3{x^2} - 2xy - {y^2}} \right) + \left( {3{y^2} - {x^2} - 2xy} \right)}}{{\left( {{x^3} + {y^3} - {x^2}y - {y^2}x} \right)}} = \frac{{2\left( {{x^2} + {y^2} - 2xy} \right)}}{{{x^2}\left( {x - y} \right) - {y^2}\left( {x - y} \right)}} = \frac{{2{{\left( {x - y} \right)}^2}}}{{\left( {{x^2} - {y^2}} \right)\left( {x - y} \right)}} = \frac{2}{{\left( {x + y} \right)}}\)   

    Now,

    \(\frac{{{\partial ^2}U}}{{\partial {x^2}}} + \frac{{2{\partial ^2}U}}{{\partial x\partial y}} + \frac{{{\partial ^2}U}}{{\partial {y^2}}} = \left( {\frac{\partial }{{\partial x}} + \frac{\partial }{{\partial y}}} \right)\left( {\frac{{\partial U}}{{\partial x}} + \frac{{\partial U}}{{\partial y}}} \right) = \left( {\frac{\partial }{{\partial x}} + \frac{\partial }{{\partial y}}} \right)\left( {\frac{2}{{x + y}}} \right) = \frac{\partial }{{\partial x}}\left[ {\frac{2}{{x + y}}} \right] + \frac{\partial }{{\partial y}}\left[ {\frac{2}{{x + y}}} \right] = \frac{{ - 2}}{{{{\left( {x + y} \right)}^2}}} + \frac{{ - 2}}{{{{\left( {x + y} \right)}^2}}} = \frac{{ - 4}}{{{{\left( {x + y} \right)}^2}}}\)
  • Question 7
    1 / -0
    The maximum value of the function \(f\left( x \right) = - \frac{5}{3}{x^3} + 10{x^2} - 15x + 16\) in the interval (0.5, 3.5) is 
    Solution

    \(f\left( x \right) = - \frac{5}{3}{x^3} + 10{x^2} - 15x + 16\) 

    \(f'\left( x \right) = - \frac{5}{3}\left( {3{x^2}} \right) + 10x - 15\) 

    = -5x2 + 20x – 15

    f’(x) = 0

    -5x2 + 20x – 15 = 0

    x2 – 4x + 3 = 0

    x = 1, 3

    f"(x) = -10x + 20

    f”(1) = -10 + 20 = 10 > 0

    at x = 1, f(x) has minimum

    f”(3) = -10(3) + 20 = -10 < 0

    at x = 3, f(x) has maximum.

    \(f\left( 3 \right) = - \frac{5}{3}{\left( 3 \right)^3} + 10{\left( 3 \right)^2} - 15\left( 3 \right) + 16\) 

    = -45 + 90 – 45 + 16 = 16

  • Question 8
    1 / -0
    Find the value of ‘c’ lying between a = 0 and b = ½ in the Mean Value Theorem for the function f(x) = x(x - 1)(x - 2)
    Solution

    For Lagrange’s mean value theorem, there exists at least one real number ‘c’ in (a, b) such that

    \(f'\left( c \right) = \frac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\)     ---(1)

    Now,

    f(a) = f(0) = 0

    \(f\left( b \right) = f\left( {\frac{1}{2}} \right) = \frac{1}{2}\left( {\frac{1}{2} - 1} \right)\left( {\frac{1}{2} - 2} \right) = \frac{3}{8}\)

    \(f'\left( x \right) = x\left( {{x^2} - 3x + 2} \right) = {x^3} - 3{x^2} + 2x\)

    f'(x) = 3x2 – 6x + 2

    f’(c) = 3c2 – 6c + 2

    Put in equation (1)

    \(3{c^2} - 6c + 2 = \frac{{\frac{3}{8} - 0}}{{\frac{1}{2} - 0}}\)

    \(3{c^2} - 6c + 2 = \frac{3}{4}\)

    12c2 – 24c + 8 = 3

    12c2 – 24c + 5 = 0

    \(c = \frac{{24 \pm \sqrt {{{24}^2} - 12 \times 5 \times 4} }}{{2 \times 12}}\)

    c = 1 ± 0.764 = 1.764 or 0.236

    But, c = 0.236, since it only lies between 0 and 1/2

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now