Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    The order and degree of the differential equation \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\) respectively are

  • Question 2
    1 / -0

    Consider the following four differential equations:

    EQ 1:  \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} - {\rm{y}} = {\rm{\pi }}\)

    EQ 2: \({\rm{\;}}{\left( {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right)^2} + 3{\rm{y}} = 36\)

    EQ 3:  \(\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + 5\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + 6{\rm{y}} = {\rm{\;\;}}0\)

    EQ 4: \({\rm{\;}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}} = {\rm{tany}}\)

    Among these four differential equations which is/are linear differential equation(s)?

  • Question 3
    1 / -0

    What is the integrating factor of the following differential equation if any?

    \(\cos {\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}}\tan {\rm{x}} = {\cos ^3}{\rm{x}}\)

  • Question 4
    1 / -0

    If roots of the auxiliary equation of \(\frac{{{d^2}y}}{{d{x^2}}} + a\frac{{dy}}{{dx}} + by = 0\) are real and equal, the general solution of the differential equation is

  • Question 5
    1 / -0

    The solutions of Differential equation \(\left( {x{y^2}-{{\rm{e}}^{\frac{1}{{{{\rm{x}}^3}}}}}} \right)dx - {x^2}y\;dy = 0\) is

  • Question 6
    1 / -0

    What is the particular integral of the differential equation: \(\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} - \frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 20{\rm{y}} = \sinh 5{\rm{x}}\)?

  • Question 7
    1 / -0

    The solution of differential equation

    dx – (x + y + 1) dy = 0 is

  • Question 8
    1 / -0

    Solution of\(\;\frac{{{d^2}y}}{{d{x^2}}} + \frac{{2dy}}{{dx}} + 17y = 0\); y(o) = 2, y’ \(\left( {\frac{\pi }{2}} \right) = 0\)

  • Question 9
    1 / -0

    Structural analysis of a theoretical beam which is subjected to an irregular loading system shows that the deflection of the beam can be best represented by the differential equation \({\rm{\;}}\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + \frac{2}{{\rm{x}}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} - 6\frac{{\rm{y}}}{{{{\rm{x}}^2}}}{\rm{\;}} = 7{{\rm{x}}^2}\) where x is the distance from a certain origin point and y is deflection. Two constraint conditions enable deflection to be zero at x = 1 and to be 1 unit at x = -1. What will be the deflection (in unit corrected up to three decimal points) at x =2?

  • Question 10
    1 / -0

     

    Consider the differential equation: \({\sec ^2}{\rm{y}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {{\rm{x}}^2}\tan {\rm{y}} = {{\rm{x}}^2}\). If \({\rm{y}}\left( 0 \right) = 2.5\) then what will the value (corrected up to three decimal points) of \({\rm{y}}\left( 1 \right)\)?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now