Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    The inverse Laplace transform of \(\frac{2}{{s + 1}}\) is

  • Question 2
    1 / -0

    Which of the following equations represents a one-dimensional wave equation?

  • Question 3
    1 / -0

    Consider the following partial differential equation:

    \(7\frac{{{\partial ^2}{\rm{\omega }}}}{{\partial {{\rm{x}}^2}}} - {\rm{a}}\frac{{{\partial ^2}{\rm{\omega }}}}{{\partial {\rm{x}}\partial {\rm{z}}}} + 7\frac{{{\partial ^2}{\rm{\omega }}}}{{\partial {{\rm{z}}^2}}} + 2\frac{{\partial {\rm{\omega }}}}{{\partial {\rm{x}}}} + {\rm{c}}\frac{{\partial {\rm{\omega }}}}{{\partial {\rm{z}}}} + {\rm{\omega }} = 0\) , where a and c are unknown constants.

    For what values of a and c, this equation will be elliptic in nature?

  • Question 4
    1 / -0

    The Fourier series for an even function f(x) is given by

  • Question 5
    1 / -0

    The Laplace transform of the function \({\rm{f}}\left( {\rm{t}} \right) = {\cos ^2}4{\rm{t\;}}\) will be where, \({\rm{s}} > 0\)

  • Question 6
    1 / -0

    For the Fourier series of the following function of period 2π \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {0,}&{ - \pi < x < 0}\\ {1,}&{0 < x < \pi } \end{array}} \right.\) the ratio (to the nearest integer) of the Fourier coefficients of the first and the third harmonic is:

  • Question 7
    1 / -0

    Evaluate \(\mathop \smallint \limits_0^\infty t{e^{ - 2t}}\cos tdt\) 

  • Question 8
    1 / -0

    The following partial differential equation is associated with heat transfer through a bar of 2 m length. The differential equation is \(\frac{{{\partial ^2}{\rm{h}}}}{{\partial {{\rm{x}}^2}}} = 2.56\frac{{\partial {\rm{h}}}}{{\partial {\rm{t}}}}{\rm{\;\;where\;\;}}0 \le {\rm{x}} \le 2{\rm{\;m\;and\;t}} \ge 0{\rm{\;in\;second}}.\) The boundary conditions associated is \({\rm{h}}\left( {0,{\rm{t}}} \right){\rm{\;}} = {\rm{\;}}0{\rm{\;and\;h}}\left( {2,{\rm{t}}} \right){\rm{\;}} = {\rm{\;}}0\) and the initial condition of the problem is \({\rm{h}}\left( {{\rm{x}},0} \right) = {\rm{sin}}3.2{\rm{x}}.\) Then the solution (ignoring the general form of solution) of the partial differential equation is

  • Question 9
    1 / -0

    What will the value of \({\rm{y}}\left( {\frac{1}{3}} \right)\) (corrected up to 3 decimal points) of the differential equation \(\frac{{{{\rm{d}}^3}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^3}}} - 3\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}} + 4{\rm{y}} = {\rm{}}0\) with the given condition \({\rm{y}} = 0{\rm{\;at\;x}} = 0{\rm{\;and\;y}} = 1{\rm{\;at\;x}} = 1{\rm{\;and\;}}\frac{{{\rm{dx}}}}{{{\rm{dt}}}} = 1{\rm{\;at\;x}} = 0\)?

  • Question 10
    1 / -0

    A differential equation for dependent variable y and independent variable t is given by, \(\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{t}}^2}}} = 7{{\rm{y}}^{\frac{2}{5}}}.{\rm{\;}}\)The initial conditions are given as \({\rm{y\;}} = {\rm{\;}}1{\rm{\;and\;}}\frac{{{\rm{dy}}}}{{{\rm{dt}}}} = \sqrt {10} {\rm{\;\;at\;t}} = 0\). What will be the value (corrected up to two decimal places) of \({\rm{y}}\left( {\sqrt {10} } \right)?\)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now