Concept:
Bayes' Theorem:
Let E1, E2, ….., En be n mutually exclusive and exhaustive events associated with a random experiment and let S be the sample space. Let A be any event which occurs together with any one of E1 or E2 or … or En such that P(A) ≠ 0. Then
\(P\left( {{E_i}\;|\;A} \right) = \frac{{P\left( {{E_i}} \right)\; \times \;P\left( {A\;|\;{E_i}} \right)}}{{\mathop \sum \nolimits_{i\; = 1}^n P\left( {{E_i}} \right) \times P\left( {A\;|\;{E_i}} \right)}},\;i = 1,\;2,\; \ldots .\;,\;n\)
Law of Total probability: Let E1, E2, E3 are mutually exclusive and exhaustive events and A is an event which can occur with all E1, E2, E3, then
\(P\left( A \right) = P\left( {{E_1}} \right) \cdot P\left( {\frac{A}{{{E_1}}}} \right) + P\left( {{E_2}} \right) \cdot P\left( {\frac{A}{{{E_2}}}} \right) + P\left( {{E_3}} \right) \cdot P\left( {\frac{A}{{{E_3}}}} \right)\)
Calculation:
Let A = Man reports that it is 6
E1 = Six actually occurs ∴ \(P\left( {{E_1}} \right) = \frac{1}{6}\)
E2 = Six does not occurs ∴ \(P\left( {{E_2}} \right) = \frac{5}{6}\)
∵ E1 and E2 are mutually exhaustive events,
∴ P(E1) + P(E2) = 1
Now,
∵ Man speaks truth 2 out of 3 times.
P [Man telling truth] \(= P\left( {\frac{A}{{{E_1}}}} \right) = \frac{2}{3}\)
P [Man telling lie] \(= P\left( {\frac{A}{{{E_2}}}} \right) = \frac{1}{3}\)
By law of total probability,
\(P\left( A \right) = P\left( {{E_1}} \right) \times P\left( {\frac{A}{{{E_1}}}} \right) + P\left( {{E_2}} \right) \times P\left( {\frac{A}{{{E_2}}}} \right) = \frac{1}{6} \times \frac{2}{3} + \frac{5}{6} \times \frac{1}{3} = \frac{1}{9} + \frac{5}{{18}} = \frac{7}{{18}}\)
By Baye’s theorem;
∴ The probability that it is actually a \(6 = \frac{{P\left( {{E_1}} \right) \cdot P\left( {\frac{A}{{{E_1}}}} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{6} \times \frac{2}{3}}}{{\frac{7}{{18}}}} = \frac{{\left( {\frac{1}{9}} \right)}}{{\left( {\frac{7}{{18}}} \right)}} = \frac{1}{7}\)