Concept:
From the static equilibrium condition, equating the compressive force (C) due to concrete and tensile force (T) due to steel along the neutral axis:
C = T
C = 0.36 fck × B × xu (lim) …... (for limiting case)
T = fds× Ast (lim) …... (for limiting case)
\(\therefore {{\text{A}}_{\text{s}{{\text{t}}_{\left( \text{lim} \right)}}}}=\frac{0.36\times {{\text{f}}_{\text{ck}}}\times \text{ }\!\!~\!\!\text{ B}\times {{\text{x}}_{{{\text{u}}_{\text{lim}}}}}}{{{\text{f}}_{\text{ds}}}}\)
Where,
fck = compressive strength of concrete, fds = design strength of steel, b = width of section and xu (lim) = limiting depth of neutral axis
Given Data:
B = 300 mm, D = 650 mm, Effective cover = 50 mm, FOS = 1.5
Effective depth (d’) = D- Effective cover = 650 – 50 = 600 mm
fds= fy/FOS = fy/1.5 = 0.66fy
xu (lim) = 0.48 × d = 0.48× 600 = 288 mm
Calculations:
\(\therefore {{\text{A}}_{\text{s}{{\text{t}}_{\left( \text{lim} \right)}}}}=\frac{0.36\times 300\times 35\times 288\text{ }\!\!~\!\!\text{ }}{\frac{415}{1.5}}=3934.84\text{ }\!\!~\!\!\text{ m}{{\text{m}}^{2}}\)
Ast, lim = 3935 mm2
Check for minimum reinforcement:
Ast (min) = 0.85 bd/fy = 0.85 × 300 × 600/415 = 373 mm2
∵ Ast (lim) > Ast (min) ⇒ OK
Check for maximum reinforcement:
Ast (max) = 4% of gross area = 0.04 × B × D = 0.04 × 300 × 650 = 7800 mm2
∵ A
st (lim) < A
st (max) ⇒ OK